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Radical Cross-Coupling
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Stereo-selective Radical Cross-Coupling

- Enantio-selective radical cross-coupling
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Controlling the stereochemical outcome can be achieved

only on a case-by-case basis using chiral ligands or in a diastereoselective
fashion guided by nearby stereocenters.
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Iridium Catalyzed Decarboxylative Coupling
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Nitrogen Deleting Reaction

- Wolff-Kishner Reduction
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- Skeltal editing through direct nitrogen deletion
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Stereoretentive Nitrogen Deleting Coupling
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Contents

1. Introduction
2. Redox-Neutral Radical Cross-Coupling

3. Stereoretentive Radical Cross-Coupling
(Main paper)



Introduction of Prof. Baran

Prof. Phil S. Baran

Career:

1995-1997 B.S. @New York University (Prof. D. . Schuster)

1997-2001 Ph.D @the Scripps Research institute (Prof. K. C. Nicolaou)
2001-2003 Postdoc. @Harvard University (Prof. E. J. Corey)

2003-2006 Assistant Professor @the Scripps Research institute
2006-2008 Associate Professor @the Scripps Research institute

2008- Professor @the Scripps Research institute

Research topics:

Total synthesis, New reaction methodology (electrochemistry)

https://baranlab.org
10



Working Hypothesis

- Working hypothesis [Ni]
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Substrate Scope (1)

- Preparation of substrates
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. C(sp%)-C(sp?) Substrate Scope (2)
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Mechanistic Study

- Cyclopropane opening
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Reaction Mechanism (Author’s Proposal)
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Key Point in This Lecture
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Effect of Reaction Conditions on Enantioretentivity
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Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.
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Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.



Substrate Scope
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Reaction Mechanism (Author’s Proposal)
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TS1a

Mechanistic Study
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Limitations (1)

- Limitation of Aryl halides

R yield e.e.
NHSO,Ar _
hH R OMe 5% 61% e.e.
(j/ * /©/ electron- H 10% 64% e.e.
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91% e.e. dh en 34%  81%e.e.

Electron-deficient aryl groups give higher yields and ee.

- Limitation of Alkyl hydrazine
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1
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1) Sun, J.; He, J.; Massaro, L.; Cagan, D. A.; Tsien, J.; Wang, Y.; Attard, F. C.; Smith, J. E.; Lee, J. S;;

Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.
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Limitations (2)

N_ _CF,
R N_ _CF, ~ |
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1) Sun, J.; He, J.; Massaro, L.; Cagan, D. A.; Tsien, J.; Wang, Y.; Attard, F. C.; Smith, J. E.; Lee, J. S;;
24
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Summary

- Redox-neutral radical cross-coupling

H [Ni] Ph
N_ Ligand . 3
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A , _
TIPS
Redox-nuetral //
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igan NS
“NHSOAr 2 >
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N A N
1) Sun, J.; et al. Science 2025, 387, 1377. 25

2) Sun, J.; et al. Nature 2025, 642, 85.
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Electron Density / Alkyl Radical capture
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1) Sun, J.; et al. Science 2025, 387,
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E versus Z coordinated Structure
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1) Sun, J.; et al. Science 2025, 387, 1377.
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Extended Reaction Scope

(o]
( BocN Me
Cl N'

BocN N BocN B

2

N
16% (X = Br)

NBoc

N
~-N

synthetically useful quantities
for med. chem. obtained
(X=Br)

| N

1% (X = Br)

Sace
®
() N "Me

synthetically useful quantities
for med. chem. obtained
(X =Br)

52% (NMR yield, X = Br)

1) Sun, J.; et al. Science 2025, 387, 1377.
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HO
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N” CHF,

64% NMR yield
(average of 2 runs) synthetically useful quantities
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Optimization

F
Ni(dme)Cl, (20 mol%)
o Me dNH,-bpy (20 mol%)
W DMF (0.2 M TsN Me
TsN 0=$S F o+ IWCCzMe 020 = e
_NH EtsN (3.0 equiv.), 60 °C CO,Me
H 12 h, Ar, 66% crude
(0.1 mmol scale) C(sp?)-C(sp®)
0.1 mmol 0.15 mmol coupled product
(1.0 equiv.) (1.5 equiv.)
Derivation crude yield/%?
standard 66% (65% isolated)
pimperidine, 75 °C 56% (55% isolated)
pimperidine instead of Et3N (60 °C) 57%
bpy instead of dNH,-bpy 51%
dMeO-bipy instead of dNH,-bipy 53%
Bathophenoroline instead of dNH»-bipy 48%
2,6-di(1-pyrazolyl)pyridine instead of dNH»-bipy 21%
Ts instead of SO,Ar (3,5-dF-Ph) 34%
r.t. instead of 60 °C 29%
vinyl iodide (1.0 eq.), hydrazide (1.5 eq.) 61%
Ts instead of SOLAr (75 °C) 18%

a. Crude yield determined by 1H NMR analysis with dibromomethane
as internal standard.

1) Sun, J.; et al. Science 2025, 387, 1377.
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Vs Inner Sphere

200
TS1a
100 18
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- . radical rebound to Ni
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.,’ Fy o \ N/ CF, g W ch d" Y N 1 b - -34.8
g \'. "/ v ) N, F, X
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N
N
-400 - UCW v< NCbe
bz Coez 'C‘bz Cbz
0 keal mot! A0% = 4136 AG! = n.d. (barrierfess) -183 \GT =43 3448
TS1a
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(kcal mol™) s TAG = 4136 0 T T m e m o —
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7\ \
/, f\ ¥ i A
N N N \N \
,, \ ] \Ni*” . CF;
Ni! \
y N7 P /TS NTC, // CF; AN N
’ 1] \ 4/ ~~CF. N e N\ N \
R4 N~ N 3 /A \ N
70 _ - [\ 'H \ C ll"Nlo
=05 NCbz N N”
NCbz +
N
TS1a: N-C(alkyl) TS1b: Inner-sphere 2 NCbz
bond homolysis radical rebound to C(aryl) ~a
Te~a -34.8

1) Sun, J.; He, J.; Massaro, L.; Cagan, D. A.; Tsien, J.; Wang, Y.; Attard, F. C.; Smith, J. E.; Lee, J. S,;
Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.

31



Ligand exchange then Oxidative addition

AG (kcal mol)

[ligand exchange, then oxidative addition]

1) Sun, J.; He, J.; Massaro, L.; Cagan, D. A.; Tsien, J.; Wang, Y.; Attard, F. C;
Smith, J. E.; Lee, J. S.; Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.
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Oxidative addition then Ligand Exchange

30,0 >
. i '®
25.0 NF\N i
‘N':"“--| ; ChzN
ol A G CbzN ’ N,
e ~25.6 kcal/mol
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s
15.0
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%
£
% 50
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-10.0
2 y 7/
: x G : Chb: % * O
[oxidative addition, then ligand exchange] ; N e \_
-35.0 N= -34.5
F3

1) Sun, J.; He, J.; Massaro, L.; Cagan, D. A.; Tsien, J.; Wang, Y.; Attard, F. C.; Smith,
J. E.; Lee, J. S.; Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.

33



Effect of para-substituent

OMe
\NHSOAr Ni''(4,4'-CI-bpy)(NO3),
NH OMe PMP
+ y
I 2-methyl-2-butanol
N N 5% (61% e.e.) at 40 °C
Cbz low conversion Cbz 119, (58% e.e.)at 60 °C
91% e.e. hypothesis
- discourage diazene coordination to Ni by increasing the electron density of the Ni
center
- suppress inner-sphere radical capture mechanism by raising the energy of the
acceptor orbital.
[Ir], CFL light
| NiCl,-glyme
C02 dtbbpy, C52C03 R
N * > N
\ R \
Boc Boc
N N N
\ \ \
Boc Boc Boc
74% 78% 77%

1) Sun, J.; He, J.; Massaro, L.; Cagan, D. A.; Tsien, J.; Wang, Y.; Attard, F. C.; Smith, J. E.;
Lee, J. S.; Kawamata, Y.; Baran, P. S. Nature 2025, 642, 85.

2) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. 34
C. Science 2014. 345. 437.



Effect of para-substituent

Effect of Ligand Substituents and Ligand Exchange on DFT-predicted Energetics
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Ni capture vs 5-exo-cyclization
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inner-sphere radical generation and rebound
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