
Stereoretentive 
Radical Cross-Coupling

via a Redox-Neutral Mechanism

2025.12.6 Literature Seminar

M1 Kaede Ono

1



2

Contents

1. Introduction

2. Redox-Neutral Radical Cross-Coupling
(Science 2025, 387, 1377.)

3. Stereoretentive Radical Cross-Coupling
              Main paper  (Nature 2025, 642, 85.)



3

Contents

1. Introduction

2. Redox-Neutral Radical Cross-Coupling

3. Stereoretentive Radical Cross-Coupling
    (Main paper)
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Stereo-selective Radical Cross-Coupling
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Iridium Catalyzed Decarboxylative Coupling
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C. Science  2014, 345, 437.
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Nitrogen Deleting Reaction
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Stereoretentive Nitrogen Deleting Coupling
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Working Hypothesis
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Substrate Scope (1)
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Substrate Scope (2)
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Mechanistic Study
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Reaction Mechanism (Author’s Proposal)
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Key Point in This Lecture
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Effect of Reaction Conditions on Enantioretentivity
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Optimization of the Conditions (1)
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Substrate Scope 
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Reaction Mechanism (Author’s Proposal)
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Mechanistic Study
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Limitations (1)
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Limitations (2)
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Summary

251) Sun, J.; et al. Science 2025, 387, 1377.
2) Sun, J.; et al. Nature 2025, 642, 85.

TsN

N
Cbz

H
N

NHSO2Ar

TsN

H
N

NHSO2Ar
TsN

[Ni]
Ligand

Base
Δ

Ph
3

[Ni]
Ligand

Base
Δ

TsN

TsN

TIPS
Redox-nuetral

in-cage
N
Cbz

N

· Redox-neutral radical cross-coupling

· Stereoretentive radical cross-coupling



26

Appendix



Electron Density / Alkyl Radical capture
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E versus Z coordinated Structure

28

1)  Sun, J.; et al. Science 2025, 387, 1377.



Extended Reaction Scope
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Optimization
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Vs Inner Sphere
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Ligand exchange then Oxidative addition
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Oxidative addition then Ligand Exchange
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Effect of para-substituent
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Effect of para-substituent
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Ni capture vs 5-exo-cyclization
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