Problem Session (6) 2025/10/18 Kyohei Takaoka
Please provide the reaction mechanisms.
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Problem Session (6) Answer 2025/10/18 Kyohei Takaoka
Topic: Tamdem ring opening/closing in total synthesis

1. s-BuLi (2 eq), THF, ~78 to 0 °C; ethylene oxide (2.3 eq)
~78to 0 °C; TBDPSCI (1.3 eq), rt, 79%

2. m-CPBA (1.1 eq), NaHCOj3 (2 eq), CH,Cl,, 0 °C, 93%
3. o-toIMgl (1.2 eq), Et70, reflux, 68% OTBDPS
\ 4. acryloyl chloride (1.5 eq), i-ProNEt (1.7 eq)
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Regarding the reactivity of ruthenium catalyst:

The yield of the step 5 dropped to 24% when catalyst B (Hoveyda-Grubbs 2nd) was used. (73% in A)

Higher reactivity of A can be attributed to more open steric environment around the ruthenium center.

In fact, crystal structure of A indicates that two methyl groups of NHC ligand are in syn relationship (syn/anti =
91:9), therefore olefin can easily reacted with catalyst A.

Cl—Ru= CI—/F\’Iu_
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B (Hoveyda-Grubbs 2nd) A (Stewart-Grubbs catalyst) crystal structure of A
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Discussion 1: Norbornene oxide rearrangement
1.1. Norbornen oxide rearrangement under acidic conditions
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Under Brgnsted/Lewis acidic conditions, epoxide 1-20 opens to generate secondary cation 1-17 or 1-21. Proximal
hydroxy groups make cations of 1-17 and 1-21 unreactive to nucleophiles. Instead, Wagner-Meerwein
rearrangement proceed to give 1-18 and 1-22, respectively. Further reactions only proceed from these less
hindered cations. 2



1.2. The reaction with other Grignard reagents
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All rearrangement reactions (paths ¢ and f) are reversible, so there is an equilibrium among 1-29, 1-30, 1-31 and 1-
37. Path b is unfavorable because of steric repulsion with the highlighted hydrogen atoms.

proceeds from 1-30 to generate 1-32 via path a. Otherwise, almost the same amount of intermediates exist, so the
reaction is supposed to be kinetically controlled.

In case of R' = Ph: 1-30 becomes benzyl cation and much more stable than others. As a result, the reaction

In case of R = Ph, o-tol: They are relatively bulky, so intramolecular reactions (paths a, d, and e) are preferable.
Among them, path d is the most favorable reaction for bulkier reagent, because the most accessible proton is the
reaction point. As a result, 1-35 is a major product. Path e is the second most favorable, because there is a steric
repulsion in path a (highlighted in gray in 1-30).

Especially in case of R' = (CH,),OTBPDS: Paths a and e are unfavorable because of steric hindrance of alkyl chain.
Therefore, the reaction occurred selectively.




For halogenation:
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Due to Schlenk equilibrium, some amount of MgX, exists in the reaction mixture.
When 1-14 reacts with MgX,, halogenated product is obtained.

t-
The population of MgX, differs in the alkyl group, and formation of MgMe, would be \_
more favorable than formation of MgPh, or Me(o-tol), because of steric repulsion. b

Therefore, in case of MeMgl, 1-26 was generated.
In case of t-BuMgBr, only MgX, can react with 1-14 because of bulky {-Bu group,

yielding 1-16 in moderate yield. 1-14

Discussion 2: Thermodynamic stability
The entire reaction process is reversible, thus the reaction is thermodynamically controlled.
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relative Gibbs free energy calculated at BSLYP/STO-3G (298 K, 1 atm, gas phase)

Calculation of model substrate M1 and M2 implied that M2 is thermodynamically stable isomer, which accrods
with the experimental result. Olefin highligheted in pink induces significant ring strain, so M1 becomes less stable.
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Discussion 3: Regio- and stereoselectivity
3.1. [4+2] cycloaddition
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3.1.2. Stereoselectivity 2.1
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