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Please provide the reaction mechanisms.
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1. s-BuLi (2 eq), THF, −78 to 0 °C; ethylene oxide (2.3 eq)
−78 to 0 °C; TBDPSCl (1.3 eq), 0 °C to rt, 79%

2. m-CPBA (1.1 eq), NaHCO3 (2 eq), CH2Cl2, 0 °C, 93%
3. o-tolMgI (1.2 eq), Et2O, reflux, 68%
4. acryloyl chloride (1.5 eq), i-Pr2NEt (1.7 eq)
CH2Cl2, rt, 96%

5. A (10 mol%), 1,6-heptadiene (20 mol%)
benzene, 60 °C, 73%
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2-2

1. xylene, 130 to 175 °C
2. NaBH3CN (2 eq), AcOH/i-PrOH (1/4)
0 °C, 55% (2 steps)
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Problem Session (6) Answer 2025/10/18 Kyohei Takaoka
Topic: Tamdem ring opening/closing in total synthesis

1

Miura, Y.; Hayashi, N.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2012, 134, 11995.
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1. s-BuLi (2 eq), THF, −78 to 0 °C; ethylene oxide (2.3 eq)
−78 to 0 °C; TBDPSCl (1.3 eq), rt, 79%

2. m-CPBA (1.1 eq), NaHCO3 (2 eq), CH2Cl2, 0 °C, 93%
3. o-tolMgI (1.2 eq), Et2O, reflux, 68%
4. acryloyl chloride (1.5 eq), i-Pr2NEt (1.7 eq)
CH2Cl2, rt, 96%

5. A (10 mol%), 1,6-heptadiene (20 mol%)
benzene, 60 °C, 73%
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Discussion 1: Norbornene oxide rearrangement
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Regarding the reactivity of ruthenium catalyst:
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The yield of the step 5 dropped to 24% when catalyst B (Hoveyda-Grubbs 2nd) was used. (73% in A)
Higher reactivity of A can be attributed to more open steric environment around the ruthenium center.
In fact, crystal structure of A indicates that two methyl groups of NHC ligand are in syn relationship (syn/anti =
91:9), therefore olefin can easily reacted with catalyst A.

B (Hoveyda-Grubbs 2nd) A (Stewart-Grubbs catalyst)

1.1. Norbornen oxide rearrangement under acidic conditions
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39%
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Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589.
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Under Brønsted/Lewis acidic conditions, epoxide 1-20 opens to generate secondary cation 1-17 or 1-21. Proximal
hydroxy groups make cations of 1-17 and 1-21 unreactive to nucleophiles. Instead, Wagner-Meerwein
rearrangement proceed to give 1-18 and 1-22, respectively. Further reactions only proceed from these less
hindered cations.
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1.2. The reaction with other Grignard reagents

O
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R = Ph: 1-23/1-24-Ph = 3.3:1
R = o-tol: 1-23/1-24-o-tol = 5.7:1
(yields are not mentioned)
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1.3. Reaction mechanism and selectivity

Gerteisen, T. J.; Kleinfelter, D. C. J. Org. Chem. 1971, 36, 3255.

1-14

1-14

1-23
18%

1-24-Me
30%

1-25
24%

1-26
11%

1-23 1-24

1-14 1-16 1-27 1-28

R'

O
XMg

1-36

H

R

R'

ORMg

1-37
H R'

ORMg

1-38
H

R

1-29

O

R'

1-30
(stabilized when R' = Ph)

O

R'

Mg

1-31

O

R'

MgR

H

Mg
R

X

H

H

O

R'

MgX

H
R

1-32

1-33

O

R'

H R'

O
Mg

H

R
H

H

path b

R'

O
XMg

1-34

path c

H
H

RMgX

1-31'

1-35path d

hydride transfer

Wagner-
Meerwein

rearrangemnt

path e

X

path f

only small MeMgI
can react with 1-37

O
R'

HH
H

MgR

sterically
unfavored

path a

1,3-hydride
transfer?

R = Me or Ph or o-tol

R' = H or Ph or
(CH2)2OTBDPS

path g

MeMgI (1.6 eq)
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All rearrangement reactions (paths c and f) are reversible, so there is an equilibrium among 1-29, 1-30, 1-31 and 1-
37. Path b is unfavorable because of steric repulsion with the highlighted hydrogen atoms.

In case of R' = Ph: 1-30 becomes benzyl cation and much more stable than others. As a result, the reaction
proceeds from 1-30 to generate 1-32 via path a. Otherwise, almost the same amount of intermediates exist, so the
reaction is supposed to be kinetically controlled.

In case of R = Ph, o-tol: They are relatively bulky, so intramolecular reactions (paths a, d, and e) are preferable.
Among them, path d is the most favorable reaction for bulkier reagent, because the most accessible proton is the
reaction point. As a result, 1-35 is a major product. Path e is the second most favorable, because there is a steric
repulsion in path a (highlighted in gray in 1-30).
Especially in case of R' = (CH2)2OTBPDS: Paths a and e are unfavorable because of steric hindrance of alkyl chain.
Therefore, the reaction occurred selectively.

In case of R = Me: Due to small size of Me, three paths (d, e, f) competed with each others.
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Kato, D.; Sasaski, Y.; Boger, D. L. J. Am. Chem. Soc. 2010, 162, 3685-3687.
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1. xylene, 130 to 175 °C
2. NaBH3CN (2 eq), AcOH/i-PrOH (1/4)
0 °C, 55% (2 steps)
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Discussion 2: Thermodynamic stability

[RuII]

The entire reaction process is reversible, thus the reaction is thermodynamically controlled.

1-10 (C28H34O3Si) 1-12 (C28H34O3Si)

M1 M2
bond angle: 108 °

Calculation of model substrate M1 and M2 implied that M2 is thermodynamically stable isomer, which accrods
with the experimental result. Olefin highligheted in pink induces significant ring strain, so M1 becomes less stable.

2 RMgX MgR2 + MgX2

1-14

O

H

Mg
X

X

1-39

O

MgX O
Mg

X
H

X

O
XMg

H

X

H

Due to Schlenk equilibrium, some amount of MgX2 exists in the reaction mixture.
When 1-14 reacts with MgX2, halogenated product is obtained.
The population of MgX2 differs in the alkyl group, and formation of MgMe2 would be
more favorable than formation of MgPh2 or Me(o-tol)2 because of steric repulsion.
Therefore, in case of MeMgI, 1-26 was generated.
In case of t-BuMgBr, only MgX2 can react with 1-14 because of bulky t-Bu group,
yielding 1-16 in moderate yield.
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bicyclo [2.2.1] hept-2-ene 5/6-cis fused ring system
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3.1. [4+2] cycloaddition
3.1.1. Regioselectivity
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J. Am. Chem. Soc. 2002, 124, 11292.

Dearomatization of indole is unfavorable, so the reaction from indole ring did not proceed.
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support that indole ring is
inactive to [4+2] cycloaddition.
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