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Problem Session (4)                                                  2025/06/21 Takahiro Migita 
Topic: Enantioselective Reactions on Allenyl Silanes 
 
Problem 1 
Please provide the mechanisms for the following reaction. 

 

 

Problem 2 
Please provide the mechanisms for the following reactions and guess the stereochemistry of 2-2. 

 

 

 

Ph
F

F

OAc

CuOTf•1/2C6H6 (6 mol%)
A (7 mol%), PhMe2SiBpin (1.35 eq)
CsF (1.6 eq), toluene/MTBE (9/1)
35 °C, 95%, 90%ee •

F

Ph

SiMe2Ph

OAc

1-1 1-2

N

O
MeO

H
OH

SiEt3
2-1

94%ee

1. MsCl (1.1 eq), Et3N (1.5 eq)
    CH2Cl2, 0 °C;
    CuCN (3.0 eq), LiCl (6.0 eq)
    MeMgBr (3.0 eq), -78 °C, 88%
2. B (1.8 eq), Et2O, -78 to -20 °C
    84%, 97%ee
3. TiCl4 (1.5 eq), CH2Cl2, -78 °C
     77%, 98%ee

SiEt3

Ph

O

2-2

*CuCN (3.0 eq), LiCl (6.0 eq), and MeMgBr (3.0 eq) were stirred in THF at 0 ℃ for 1 h before addition.
*The preparation of B was not mentioned in detail.  According to the scheme in SI section, it seemed to be 
prepared from C and t-BuLi before addition.
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Problem Session (4) -Answer-                                     2025/06/21 Takahiro Migita 
Topic: Enantioselective Reactions on Allenylsilanes 

 

Introduction: Why is it important to synthesize allenes enantioselectively? 

→Most of the natural allenic compounds are nonracemic (like 0-1, see Angew. Chem., Int. 

Ed. 2004, 43, 1196. for review).  Therefore, axial chiral allenes are utilized as useful 

building blocks for synthesis.  Also, allenes show various reactivity, which make them 

the foothold for further transformation.  Especially, allenylsilanes are often utilized as 

chiral pool (see also 131130_PS_Shun_YOSHIOKA_ene_reaction).  

 

  

O'Connor, T. J.; Mai, B. K.; Nafie, J.; Liu, P.; Toste, F. D. J. Am. Chem. Soc. 2021, 143, 13759. 

proposed catalytic cycle 
 

 
 

Generation of 1-4, 1-6, and 1-7 was confirmed by utilizing 1H, 19F, and 11B NMR studies.  Fluoride source CsF also 

contributed to capturing FBpin 1-5.  
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Discussion 1: Regioselectivity of migratory insertion 

 
 

Supporting calculation using model compounds 
* After this, all calculations were conducted with M06/SDD(Cu,Fe,Cs)-6-311+G(d,p)/SMD-(toluene)//B3LYP-

D3(zero)/SDD(Cu,Fe,Cs)-6-31G(d) level of theory using 1-11 and less bulky ligand A’ as model substrates. 

 

* In ligand screening, ligand A’ also showed slightly lower ee than ligand A.  (This is also suggesting that bulkiness of 

the substituents is key to the enantioselectivity.) 
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Discussion 2: Enantioselectivity of β-fluoride elimination 
<conformation of ligand A> 

• Ligand A functioned as a bidentate ligand to Cu.  The conformation of ligand A in 1-9 would be half-chair X depicted 

in half-chair conformation as below.  The methyl group will be oriented to avoid repulsion with vinyl cupper species. 

 

• Grey-highlighted aromatic rings orienting to the side of cupper species and the differences in the bulkiness between 

Ph and Ar on P atoms are key to substrate recognition. 

 

*The two C-P bonds are not parallel actually.  To simplify, the differences in the angles were intentionally ignored in 

Newman projection a and b. 

 

<syn-elimination> 

・Large steric repulsion between Ar and Ph destabilized 1-9A.  In 1-9B, no significant steric repulsion was observed. 
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<anti-elimination> 

・In the case of anti-elimination, strong C-F bond should be activated by Lweis acid CsF.  However, large Cs cannot 

approach the F atom due to the bulkiness of the ligand.  In addition, blue-highlighted Ph and F groups became closer 

to the ligand than in the case of syn-elimination.  Therefore, enantioselective β-fluoride elimination should proceed 

via only syn-elimination 

 

 

 

 

 

 

 

 

 

 

 

 

. 

*Anti-elimination was proposed in the case of J. Am. Chem. Soc. 2019, 141, 19917 under existence of Lewis acid and 

intramolecular chelation.  

 

Supporting calculation using model compounds 
Calculation also suggested anti-elimination was much more disadvantageous than syn-elimination. 

 

 

 

 

 

 

 

Li, L. Z.; Huang, Y. R.; Xu, Z. X.; He, H. S.; Ran, H. W.; Zhu, K. Y.; Han, J. C.; Li, C. C. J. Am. Chem. Soc. 2024, 146, 24782. 
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3. TiCl4 (1.5 eq), CH2Cl2, -78 °C
     77%, 98%ee
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Discussion: tandem cyclization 
Allenylsilane electrophililc addition 
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Chem. Rev. 2012, 112, 2339.
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Allenylsilane moiety acted as nucleophile and attacked the enone in 1,4-addition manner.  To maintain enone 

conjugation and s-trans form, the addition would proceed in boat-like conformation.  If the allenylsilane moiety 

approaches like 2-12’, bulky TES group orients to the Ph group of enone moiety.  Occurring steric repulsion prevented 

the allenylsilane moiety from approaching like 2-12’. 

 
 

On the other hand, when the allenylsilane moiety approached like 2-13’, the cyclization smoothly proceeded to afford 

2-13 with 6-membered ring without generating large repulsion.  Cation 2-13 was stabilized by β-silicon stabilization. 

 

 

1,2-silyl shift provided two possible reacting points C1 and C2.  Population of silyl cation intermediate 2-14 would be 

small due to its strained 3-membered ring with two sp2 carbon.  Therefore, vinyl cation 2-13 or 2-15 should be the 

precursor for the cyclization.  The reaction proceeded at −78 °C, which suggested desired 2-2 was kinetic product.  

(1) C1→Formation of four-membered ring with sp2 carbon was very slow at −78 °C. 

(2) C2→The cyclization would proceed to afford five-membered ring, which is more readily occurred.   

 

 
 

Therefore, the stereochemistry to be guessed is R in both C-C bonds. 

•

H

Et3Si

O
Ph

TiCl3

2-11 2-12’

O
TiCl3

Ph

H

2-12
not formed

SiEt3

OPh
H

•
Et3Si

TiCl3

2-13’

•

H

Et3Si

O
Ph

TiCl3

2-11

C1

C2

O
TiCl3

Ph

H

2-13

SiEt3

OPh

H

•
Et3Si TiCl3

O
TiCl3

Ph

H

2-13

SiEt3

O
TiCl3

Ph

H

2-14

SiEt3

O
TiCl3

Ph

H

2-15

SiEt3

C2

C1

O
Ph

SiEt3

2-16
not obtained

sp2

C1

formation of highly
strained ring

SiEt3

Ph

O

2-2

O
Ph

H
SiEt3

(R)

(R)

1,2-silyl shift

R2

Et3Si

R1

R1

SiEt3

R2R1

Si
Et3

R2


