Problem Session (4)

Please provide the reaction mechanisms for the following reactions.

*Procedure:

 $\overline{P(NMe_2)_3}$ was added dropwise to a stirred mixture of **1-1**, **1-2**, and DBU in CH₂Cl₂ at -78 °C. The resulting mixture was then slowly warmed to room temperature and stirred for 4 h.

t-Bu N-N Ph **2-1** (1.2 eq)

Problem Session (4) -Answer-

topic: Phosphine-promoted annulation reactions

OR² 1-13 Kukhtin-Ramirez adducts ÓR²

1-14

R = amino,

alkoxy, etc.

OR

1-12

ÓR²

1-15 C₁ synthon

review: Liu, Y.; Sun, F.; He, Z. Tetrahedron Lett. 2018, 59, 4136.

[1-3] Possible side reactions

[1-3-1] vinylogous Morita-Baylis-Hillman reaction (known as Rauhut-Currier reaction) (review of this type of reactions: Aroyan, C. E.; Dermenci, A.; Miller, S. J. *Tetrahedron* **2009**, *65*, 4069.)

Considering the reported pKa values shown in the box, phosphorus-ylide (1-21) formation wouldn't occur.

[1-4] Reactivity of P(NMe₂)₃

Huang, Y.; Wang, N.; Wu, Z.-G.; Wu, X.; Wang, M.; Huang, W.; Zi, Y. Org. Lett. 2023, 25, 7595.

As shown in table 1, P(OMe)₃ and PPh₃ are not suitable for Kukhtin-Ramirez addition.

P(V) can be stabilized by electron donation of three NMe2 group. In the case of OMe or Ph, their electron donating abilities seem to be not

enough.

Furthermore, the following P=O bond dissociation enthalpies have been reported:

(Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A. T. Angew. Chem. Int. Ed. 2012, 51, 10605.)

(Et₂N)₃P=O : 156 kcal/mol (EtO)₃P=O : 151 kcal/mol Ph₃P=O : 127 kcal/mol

Based on above comparison, it can be said that amine substituents stabilize P(V) effectively.

Table 1. Optimization of the Reaction Conditions⁴

A Phylipph	70)	.Ph
1a 2a	me Jaaa	D DOMe
catalyst (x mol %)	time (h)	yield (%) ^b
$P(NMe_2)_3$ (110)	1	99
$P(NMe_2)_3$ (20)	1	99
$P(NMe_2)_3$ (10)	1	98
$P(NMe_2)_3$ (5)	1	35
$P(NMe_2)_3$ (5)	2	61
$P(NMe_2)_3$ (10)	0.5	87
tris(1-pyrrolidinyl)phosphine (10)	2	68
PPh ₃ (10)	2	trace
$P^{n}Bu_{3}$ (10)	2	trace
$P(OEt)_{3}$ (10)	2	trace
	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$\begin{array}{c cccc} \hline & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$

^aReaction conditions unless otherwise noted: 1a (0.55 mmol, 1.1 equiv), 2a (0.50 mmol), THF (2 mL), rt. ^bIsolated yields.

Discussion 2: Cyclopropane formation

1-2 (1.1 eq)

When the reaction conducted without base (DBU),

cyclopropane 1-7 was mainly isolated.

Ph

5-exo cyclization required high temperature and Li⁺ activation.

Zhang, L.; Lu, H.; Xu, G.-Q.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2017, 82, 5782.

2 Overview of the reaction modes of allenoates in Phisphine-catalyzed annulation reactions

review: Ni, H.; Chan, W.-L.; Lu, Y. *Chem. Rev.* **2018**, *118*, 9344. Also refer to 140208_PS_Tomoya_Yamashita

[3-2] Experimental results

The use of N-methylated **P1-Me** resulted in decreased yield and enantiomeric excess (ee), suggesting that hydrogen bonding between NH and enolate 2-8 is crucial for both the reaction efficiency and the stereochemistries.

[3-3] Hydrogen bonding directed nucleophilic addition of enolate 2-8

(a) Pawar, D. M.; Smith, S. V.; Mark, H. L.; Odom, M. R.; Noe, E. A. *J. Am. Chem. Soc.* **1998**, *120*, 10715.
(b) 240921_PS_Yuto_Hikone

Cyclodecene would take this conformation.

[3-4-3] 10-membered α , β -unsaturated lactone (**A**)

2-11 has hydrogen bonding between enolate O and NH. Therefore, it would be more feasible to consider **10-membered** α,β-unsaturated lactone-type transition state rather than simple *cis*-cyclodecene-type transition state.

chair-chair-boat confomer A1 was mentioned as the most stable one, but in the case of 2-11, there seems to be large steric repulsion derived from highlighted Ph group.

Three other conformers A2, A3, and A4 were also mentioned in the paper, and to avoid the steric repulsion derived from P-Ph, A4 is the best one.

(In the conformer A4, two Ph group of P both directed to outside of the 10-membered ring system.)

In section 3-4-4, 2-11-a and 2-11-b were considered as the similar conformers to A4.

[3-4-4] Enantioselective annulation

[A] 6-exo cyclization

