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Please provide the reaction mechanisms for the following reactions.

P(NMe2)3 (1.1 eq)
DBU (20 mol%)

CH2Cl2, –78 ºC to rt

86%

P2 (20 mol%)
CHCl3, rt

80% (92.5%ee)

*

*Procedure:
P(NMe2)3 was added dropwise to a stirred mixture of 1-1, 1-2, and DBU in CH2Cl2 at –78 ºC.
The resulting mixture was then slowly warmed to room temperature and stirred for 4 h.
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topic: Phosphine-promoted annulation reactions
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Zhou, R.; Zhang, K.; Han, L.; Chen, Y.; Li, R.; He, Z. Chem. Eur. J. 2016, 22, 5883.

Discussion 1: Kukhtin-Ramirez addition
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1-9
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sp3-like
anion

To avoid the steric repulsion
between pink-highlighted Ph groups,

1-9 and 1-9' should take these
confomations respectively.

good orbital
overlap

poor orbital
overlap

A bond formation between two tetra-substituted
carbons via SN2 reaction is difficult.



review: Liu, Y.; Sun, F.; He, Z. Tetrahedron Lett. 2018, 59, 4136.
[1-3] Possible side reactions
[1-3-1] vinylogous Morita-Baylis-Hillman reaction (known as Rauhut-Currier reaction)

(review of this type of reactions: Aroyan, C. E.; Dermenci, A.; Miller, S. J. Tetrahedron 2009, 65, 4069.)

Ph

CNNC

Ph P(NMe2)3

H
Ph

CNNC

Ph P(NMe2)3

[1-3-2] Phosphorus-ylide formation

Considering the reported pKa values shown in the box, phosphorus-ylide (1-21) formation wouldn't occur.

LUMO
(ketone,
C-O π*)

LUMO
(ester,

C-O π*)

LUMO'+1

LUMO'

[1-2] Reactivity of α-dicarbonyls
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✓: α-Dicarbonyls (1-12) exhibit high electrophilicity
because of the generation of LUMO'.

✓: high affinity between P and O
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Jenner, G. Tetrahedron Lett. 2000, 41, 3091.
1-19 1-20This type of reactions require elevated temperatures

(e.g., 50 ºC) to proceed even with a simple substrate (1-19).

– P(NMe2)3
1-1

PR3 reacts with α-dicarbonyls faster than α,β-unsaturated
carbonyl compounds. In many cases, PR3 is added at -78 ºC
followed by warming, suggesting that the reaction selectivity
can be controlled by initiating from low temperature.

CNNC
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H

pKa (in DMSO) 11.1a 17.4b

a) J. Am. Chem. Soc. 1975, 97, 7006.
b) J. Am. Chem. Soc. 1994, 116, 968.
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another possible pathway to 1-9'' (and to 1-3)

The population of 1-16 seems quite low because P(NMe2)3 should react with 1-1 to form 1-4 preferentially.
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When the reaction conducted without base (DBU),
cyclopropane 1-7 was mainly isolated.

Discussion 2: Cyclopropane formation
[2-1] Experimental results of cyclopropane formation
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[2-2] 3-exo vs 5-exo cyclization

N
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TsPh

NC
CN

O
EtO

Zhang, L.; Lu, H.; Xu, G.-Q.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2017, 82, 5782.

SM 1-26 (3-exo) 1-27 (5-exo)
1-24 + 1-25
1-24 + 1-25

1-26 LiCl (3.0 eq), (CH2Cl)2, 80 ºC 0% 28%

5-exo cyclization required high temperature and Li+ activation.

[1-4] Reactivity of P(NMe2)3

Huang, Y.; Wang, N.; Wu, Z.-G.; Wu, X.; Wang, M.; Huang, W.; Zi, Y. Org. Lett. 2023, 25, 7595.

As shown in table 1, P(OMe)3 and PPh3 are
not suitable for Kukhtin-Ramirez addition.

P(V) can be stabilized by electron donation of
three NMe2 group. In the case of OMe or Ph,
their electron donating abilities seem to be not
enough.

Furthermore, the following P=O bond dissociation
enthalpies have been reported:
(Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A. T.
Angew. Chem. Int. Ed. 2012, 51, 10605.)

(Et2N)3P=O : 156 kcal/mol
(EtO)3P=O : 151 kcal/mol
Ph3P=O : 127 kcal/mol

Based on above comparison, it can be said that
amine substituents stabilize P(V) effectively.

- 3 -



[1]

N N
t-Bu

O

Ph
・

OBn

O

OAc
P1 (20 mol%)

Cs2CO3 (1.2 eq)
toluene, rt

82% (91%ee)

N

N

O
t-Bu

Ph

2-1 (1.2 eq) 2-2

+

O

OBn

Han, X.; Yao, W.; Wang, T.; Tan, Y. R.; Yan, Z.; Kwiatkowski, J.; Lu, Y. Angew. Chem. Int. Ed. 2014, 53, 5643.

PPh2

N
H

P1

O

F3C CF3

OTMS

= PRPh2 P1

・
OBn

O

OAc

PRPh2

CO2Bn

N N
Ph

O

t-Bu

H

PRPh2

CO2Bn

N N
Ph

O

t-Bu

N

N
COOBn

O
t-Bu

Ph

2-2

OBn

O

OAc

Ph2RP

OBn

OPh2RPOAc–

N N
t-Bu

O

Ph
H

N N
t-Bu

O

Ph

Cs2CO3

2-1

R

N
R'H

PPh2

steric or
electronic

control
Brønsted acid, H-bond donor

highly reactive phosphine

Bn
PPh2

N
H

F3C

O

P2→2-[2]

proton transfer
to recover
aromaticity

– PRPh2

Discussion 3:
Enantioselectivity

Discussion 3: Enantioselectivity
[3-1] Amino acid based multifunctional chiral phosphines
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review: Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
Also refer to 140208_PS_Tomoya_Yamashita
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[3-3] Hydrogen bonding directed nucleophilic addition of enolate 2-8
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proton transfer
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[3-2] Experimental results

catalyst time yield ee

P1 6 h 82% 91%

P1-Me 15 h 36% 19%

entry

1

2

The use of N-methylated P1-Me resulted in decreased yield and enantiomeric excess (ee), suggesting that
hydrogen bonding between NH and enolate 2-8 is crucial for both the reaction efficiency and the
stereochemistries.
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2-10 should be thermodynamically favored over 2-10',
based on their respective pKa values.
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[3-4] Stable conformation of 10-membered ring system

boat-chair-boatref.(a)(b) In the case of cis-cyclodecene, cis-olefin should lie in position a-b.
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[3-4-1] cyclodecane [3-4-2] cis-cyclodecene

(a) Pawar, D. M.; Smith, S. V.; Mark, H. L.; Odom, M. R.;
Noe, E. A. J. Am. Chem. Soc. 1998, 120, 10715.
(b) 240921_PS_Yuto_Hikone

Cyclodecene would take this conformation.

Still, W. C.; Galynker, I. Tetrahedron 1981, 37, 3981.
[3-4-3] 10-membered α,β-unsaturated lactone (A)
2-11 has hydrogen bonding between enolate O and NH.
Therefore, it would be more feasible to consider 10-membered α,β-unsaturated lactone-type transition state
rather than simple cis-cyclodecene-type transition state.
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chair-chair-boat confomer A1 was mentioned as the most stable one, but in the case of 2-11, there seems to be
large steric repulsion derived from highlighted Ph group.

2-11-A1

A

P P

P

Three other conformers A2, A3, and A4 were also mentioned in the paper, and to avoid the steric repulsion
derived from P-Ph, A4 is the best one.
(In the conformer A4, two Ph group of P both directed to outside of the 10-membered ring system.)

In section 3-4-4, 2-11-a and 2-11-b were considered as the similar conformers to A4.

A2 A3 A4
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Discussion 4: enantioselective tandem-annulation
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Unlike in problem 2-[1],
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e) J. Am. Chem. Soc. 1994, 116, 968.
f) J. Org. Chem. 1993, 58, 3061.
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– PR'Ph2
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