Mechanical Force Cleaves Specific Covalent Bond

2025.5.31. Literature Seminar D3 Hibiki Asai

Contents

1. Introduction (Mechanochemistry in Polymer)

2. Mechanically Triggered Chemiluminescence (Main paper)

Can Mechanical Force Overcome Woodward–Hoffmann Rules?

Hickenboth, C. R.; Moore, J. S.; White, S.; Sottos, N. R.; Baudry, J.; Wilson, S. Nature 2007, 446, 423.

Accepted Mechanism of Polymer Cleavage by Sonication

- Threshold of polymer length: ~30 kDa
- Cleavage point: Center of polymer
- Efficacy of polymer cleavage: ↑sound intensity, ↓solvent temperature, ↓polymer concentration

Ultrasound Cleaves Weak Bond

Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Macromolecules 2005 38, 8975.

Bond "Strength" in Bond Cleavage by Force

	r ₀ [Å]	BDE [kcal/mol]	F _{max} [nN]
н—н	0.743	112.7	8.31
CI—CI	2.045	50.8	4.60
0=0	1.221	121.6	14.89

Beyer, M. K. J. Chem. Phys. 2000, 112, 7307.

Contents

- **1. Introduction (Mechanochemistry)**
- 2. Mechanically Triggered Chemiluminescence (Main paper)

Introduction of Prof. Maxwell J. Robb

Prof. Maxwell J. Robb 2009 B.S. @ Colorado School of Mines (Prof.) 2014 Ph.D @ University of California (Prof. Craig J. Hawker) 2014~2017 postdoctoral research@ University of Illinois (Prof. Jeffy S. Moore) 2017~2024 Assistant Professor @ California Institute of Technology 2024~ Full Professor @ California Institute of Technology

Research topic: Polymer Mechanochemistry

Landmark Report

Concept of This Study

Hu, X.; Zeng, T.; Husic, C.; Robb, M. J. J. Am. Chem. Soc. 2017, 141, 15018.

Chemiluminophore Unit (II)

1) Green, O.; Eilon, T.; Hananya, N.; Gutkin, S.; Bauer, C. R.; Shabat, D. *ASC Cent. Sci.* **2017**, *3*, 349. 2) Adam, W.; Bronstein, I.; Trofimov, A. V.; Vasil'ev, R. F. *J. Am. Chem. Soc.* **1999**, *121*, 958.

Design of Mechanoluminophore

Liu, P.; Tseng, Y.-L.; Ge, L.; Zeng, T.; Shabat, D.; Robb, M. J. J. Am. Chem. Soc. 2024, 146, 22151.

Experiment Procedure

CO₂Me

CO₂Me

CO₂Me

Luminescence Intensity of Each Sonication Time

Luminescence Intensity After of During Sonication

Mechanoluminescence in Biological Condition

Liu, P.; Tseng, Y.-L.; Ge, L.; Zeng, T.; Shabat, D.; Robb, M. J. J. Am. Chem. Soc. 2024, 146, 22151.

Summary

Apendix

Appendix: Synthesis of Mechanoluminophore

Appendix: Synthesis of Mechanoluminophore

Liu, P.; Tseng, Y.-L.; Ge, L.; Zeng, T.; Shabat, D.; Robb, M. J. J. Am. Chem. Soc. 2024, 146, 22151.