Transfer Hydroalumination of Alkynes

2025.5.10. Literature Seminar M2 Sota Mochizuki

Table of Contents

1. Introduction

2. Iron-Catalyzed Transfer Hydroalumination of Alkynes (By Zhu group) (J. Am. Chem. Soc. 2025, 147, 15545.)

Hydroalumination of Alkynes

regioselectivity \rightarrow steric effect and electronic effect

Transfer Hydroalumination: Previous Attemptions

1) Negishi, E.; Kondakov, D. Y.; Choueiry, D.; Kasai, K.; Takahashi, T. J. Org. Chem. Soc. 1996, 118, 9577.

2) Ibragimov, A. G.; Ramazanov, I. R.; Khalilov, L. M.; Sultanov, R. M.; Dzhemilev, U. M. *Mendeleev Commun.* **1996**, 6, 4 231.

Possible Side Reactions in Transfer Hydroalumination

- 1) Feuvrie, C.; Blanchet, J.; Bonin, M.; Micouin, L. Org. Lett. 2004, 6, 2333.
- 2) DeBergh, J. R.; Spivey, K. M.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 7828.
- 3) Negishi, E.; Kondakov, D. Y.; Choueiry, D.; Kasai, K.; Takahashi, T. J. Org. Chem. Soc. 1996, 118, 9577.

Table of Contents

1. Introduction

2. Iron-Catalyzed Transfer Hydroalumination of Alkynes (By Zhu group) (J. Am. Chem. Soc. 2025, 147, 15545.)

Introduction of Prof. Shou-Fei Zhu

Prof. Shou-Fei Zhu

2000: B.S. @ Nankai University (Prof. Shou-He Xiang)
2005: Ph.D. @ Nankai University (Prof. Qi-Lin Zhou)
2012-2013: Postdoctoral Fellow @ University of Tokyo (Prof. Eiichi Nakamura)
2005-2008: Lecturer @ Nankai University
2008-2013: Associate Professor @ Nankai University
2013: Professor @ Nankai University

Research topics:

- Organic synthesis
- Homogeneous catalysis
- Organometallic chemistry

Iron-Catalyzed Transfer Hydroalumination of Alkynes

Optimization for Terminal alkynes

$() \\ (R $	AIE cataly t 30	t ₃ (1.2 eq) yst (2 mol%) oluene °C, 12 h ►	$ \begin{array}{c} \mathbf{t_2 Al} & \mathbf{H} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{H} \\ \mathbf{AlEt_2} \\ \mathbf{R} \\ \mathbf{R} \end{array} \right] $	D ₂ O 0 °C, 10 min	$ \begin{array}{c} $
	cat	alyst	conversi	on yield (<i>cis-</i> α+ <i>cis-</i> β)	r.r (cis-α / cis-β)
$Ar = \int_{R}^{I}$		R' = 2,4,6-(i-P) $R' = 2,4,6-Me_3$ R' = t-Bu	r) ₃ C ₆ H ₂ >99% C ₆ H ₂ >99% >99%	<mark>91%</mark> 73% 74%	> 98 : 2 90 : 10 90 : 10
	Ar = J		>99%	96%	5 : 95
	Cp Cp Ni(P Ni(d)	₂ TiCl ₂ ₂ ZrCl ₂ Ph ₃) ₂ Cl ₂ ppp)Cl ₂	66% 49% 80% 45%	66% not analyzed not analyzed not analyzed	91 : 9 not analyzed not analyzed not analyzed

α-Selective Transfer hydroalumination of Terminal alkynes

Optimization for Internal alkynes (1)

	Me AIEt ₃ (1.2 eq) catalyst (5 mol%) toluene 30 °C, 72 h	$\begin{bmatrix} Et_2AI & H \\ R & Me \\ H & AIEt_2 \\ R & Me \end{bmatrix}$	D ₂ O 30 °C, 30 min	$ \begin{array}{c} $
	catalyst	convers	ion (<i>cis-</i> α+ <i>cis-</i> β)	r.r (<u>cis-α / cis-β</u>)
Ar II N CI N CI	$Ar = \int_{R}^{Ar} R' = 2,4,6-(R')$ $R' = Ar = \int_{R}^{Ar} R'$ $Ar = \int_{R}^{Ar} R'$	(<i>i</i> -Pr) ₃ C ₆ H₂ >99% <i>t</i> -Bu >99% >99%	6 80% 80% 83%	80 : 20 33 : 67 22 : 78
Ar	R' =	Me >99% Et >99% <i>i</i> -Pr >99%	79% 85% 99%	10:90 15:85 10:90

Optimization for Internal alkynes (2)

$Ph \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Me AIEt ₃ (1.2 catalyst (5 toluene 30 °C, 72	eq) mol%) e 2 h	$\begin{array}{c} \mathbf{E}_{1} \mathbf{A}_{1} \mathbf{H} \\ \mathbf{R} \mathbf{M}_{\mathbf{R}} \\ \mathbf{H} \mathbf{A}_{1} \mathbf{E}_{1} \mathbf{E}_{2} \\ \mathbf{R} \mathbf{M}_{\mathbf{R}} \\ \mathbf{R} \mathbf{M}_{\mathbf{R}} \end{array}$	D ₂ O 30 °C, 30 min	$\begin{array}{c} D \\ R \\ R \\ Cis-\alpha \end{array} \\ \begin{array}{c} H \\ R \\ R \\ Cis-\beta \end{array} \\ \begin{array}{c} H \\ Me \\ Cis-\beta \end{array} \end{array}$
catalyst		conversion	yield (<i>cis-</i> α+c <i>i</i> s-β)	r.r (<mark>cis-α / cis-β</mark>)	
Ar	A				
I N, CI Fe ^{II} N CI Ar	$Ar = \int_{R'}^{R'} R'$	R ['] = Me	>99%	79%	6 : <mark>94</mark>
		R ['] = Et	>99%	85%	7: <mark>93</mark>
		R ['] = <i>i-</i> Pr	87%	43%	10 : 90
Cp ₂ TiCl ₂		>99%	99%	99:1	
	Cp ₂ ZrCl ₂			0%	not analyzed
Ni(PPh ₃) ₂ Cl ₂			97%	30%	33 : 67
Ni(dppp)Cl ₂			43%	11%	16 : 84

Transformations of Transfer Hydroalumination Product

Mechanism Experiment (1) : Radical Trapping

The addition of a radical scavenger did not influence the reaction.

catalyst

Mechanism Experiment (2) : Fe(0) Complex

• Synthesis of Fe⁰ complex

Fe⁰ complex is unlikely to be the active catalytic species.

Mechanism Experiment (3) : Fe-AI Complex

Possible Mechanism for Generation of Fe⁰ Complex

Regioselectivity (Internal Alkynes): DFT analysis

Proposed Regioselectivity for Terminal Alkynes (My Proposal)

Summary

Appendix

Reasonable pathway in Generation of Fe⁰ complex (1)

Pathway ① or ② may be considered more likely.

In iron-catalyzed sp³-sp³ cross-coupling reaction, a mixture of coupling products derived from reductive elimination of Fe^{II}RR' complexes (pathway 1) and alkenes or alkanes formed via β -hydride elimination followed by reductive elimination (pathway 2) was obtained ¹⁾. The addition of ligands such as phosphines ²⁾ or amines ³⁾ to the iron center, which increases electron density and/or steric bulk, was found to favor the formation of the coupling product (pathway 1).

In addition, isomerization of $Fe^{II}(t-Bu)$ complexes to $Fe^{II}(i-Bu)$ complexes ⁴⁾, as well as dimerization of 2-butene catalyzed by Fe^{II} complexes ⁵⁾, has been reported, suggesting that β -hydride elimination from $Fe^{II}R$ intermediates may be a feasible process.

On the other hand, isolated Fe^{II}(X)R complexes do not undergo coupling (pathway ③) or β -hydride elimination (pathway ④) ⁶⁾.

Based on these experimental results, it is more likely that Fe⁰ will be generated via reductive elimination (pathway 1) or β -hydride elimination followed by reductive elimination (pathway 2) from Fe^{II}RR' complexes.

4) Vela, J.; Smith, J. M.; Lachicotte, R. J.; Holland, P. L. Chem. Commun. 2002, 2886.

¹⁾ Dongol, K. G.; Koh, H.; Sau, M.; Chai, C. L. L. Adv. Synth. Catal.. 2007, 349, 1015.

²⁾ Hatakeyama, T.; Fujiwara, Y.; Okada, Y.; Itoh, T.; Hashimoto, T.; Kawamura, S.; Ogata, K.; Takaya, H.; Nakamura, M. *Chem. Lett.* **2011**, *40*, 1030.

³⁾ Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Che. Soc. 2004, 126, 3686.

⁵⁾ Gao, K.; Feng, G.; Liang, C.; Wang, Z.; Sun, X.; Liu, J.; Xia, C.; Ding, Y. Journal of Catalysis 2025, 447, 116155.

⁶⁾ Neidig, M. L.; Carpenter, S. H.; Curran, D. J.; DeMuth, J. C.; Fleischauer, V. E.; Iannuzzi, T. E.; Neate, P. G. N.; Sears, J. D.; Wolford, N. J. Acc. Chem. Res. **2019**, *52*, 140.

Reasonable pathway in Generation of Fe⁰ complex (2)

Furthermore, a computational study demonstrated that spin crossover can lower the activation barrier for β -hydride elimination from Fe^{II} complexes ¹⁾.

In Fe^{II} complexes, two electronic configurations are possible: a more stable high-spin state and a less stable low-spin state. During β -hydride elimination, a spin-state transition to the low-spin configuration can create an empty d orbital, which allows the Fe center to accept the two electrons from the β -hydride.

This will be interpreted as the reason for the reduced activation energy.