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benzaldehyde (2.0 eq)
HBF4•OEt2 (3.0 eq), MeOH (3.0 eq)
CH2Cl2, rt, 81%
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When the reaction was conducted at − 40 °C using the same substrate and reagents, the formation of 1-10 was
confirmed. Subsequently, when the isolated 1-10 was treated with the same reagent at room temperature, the
target compound 1-2 was obtained.
Based on these results, it is suggested that this reaction proceeds via the intermediate 1-10.
First, I will consider the plausible mechanism of formation of 1-10.
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2. Plausible mechanistic pathways of formation of 1-10

<Prins cyclization followed by ring opening (path b)>

<Knoevenagel condensation (path a)>

1-1
OH

Ph

1-11

O
Me

Ph
Ph

1-4

PhH

OH

MeOH
O

Ph
Ph

1-10

− H2O

2-2. Experimental results by authors
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In fact, even when the same reagent was applied in the absence of an aldehyde, 1-14, which would be formed
through hydroalkoxylation had not been obtained.

1-1

OH

Ph

Ph H

OH

O

Ph

Ph

1-3

− H2O

O
Ph

Ph

MeOH

MeOH
Prins

cyclization

± H
O
H

Ph

MeO Ph

1-41-12 1-13

Ring
opening

In the path (a), hydroalkoxylation of an unactivated alkyne is required, in addition to an intermolecular
reaction with an aldehyde. Therefore, this pathway is considered unlikely to proceed easily.

2-1. Plausible mechanistic pathways of formation of 1-10

2-3. Prins cyclization
2-3-1. Experimental results with similar substrates1)
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According to the Baldwin's rules2), 6-endo-dig path (b) is more favorable than 5-endo-dig path (a).

However, when R is methyl group, the vinyl cation is stabilized by hyperconjugation compared to when R

is a hydrogen. Therefore, 1-17 was also formed.
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Huang, S. Du, G. Lee, C.-S. J. Org. Chem. 2011, 76, 6534-6541.

1. 2-2 (1.5 eq), In(OTf)3 (1.0 eq), MeCN, MS 4A
0 °C to 70 °C, 66%

2. m-CPBA (3.0 eq), CH2Cl2, 40 °C, 95%
3. n-Bu4NF (1.5 eq), THF, rt
4. p-TsOH (0.10 eq), MeOH, rt, 55% (2 steps)
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The major diastereomer of product 2-12 has not been reported. However, it is considered that m-CPBA
approaches from the convex face of 2-10, leading to 2-12-a being the major diastereomer.
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This reaction is considered to proceed via a six-membered

transition state. In this case, because R1 and R2 are very bulky,

they always adopt an equatorial position in the six-membered
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It is considered that racemic 2-8 is obtained via a chair-like transition state. The enantiomer 2-8 will be considered
in this problem.
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2. Other possible mechanism
2-1. Knoevenagel condensation followed by oxa-Michael reaction
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2-2. Oxy-Cope rearrangement-aldol reaction
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A reaction pathway can also be considered where 2-20 is formed via the Knoevenagel condensation, followed by
Michael addition to form 2-8. However, in control experiments using similar substrates, 2-23, which would be
formed from the condensation of keto ester 2-21 and aldehyde 2-22, has not been obtained.

A reaction pathway can also be considered where 2-7 undergoes an oxy-Cope rearrangement to form 2-24,
followed by an aldol reaction to form 2-8. However, 2-24 has shorter conjugation compared to 2-7, and
thermodynamically, 2-7 is considered to be more stable. Therefore, this pathway less likely to proceed.
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