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topic: synthesis of nidulalin A, a dihydroxanthone natural product
Please explain the mechanisms for the following reactions.
As for steps 1 and 3, please propose rationales for the different results shown in entries 1 and 2.
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In both entries, the reactions were
performed in 24 hours.

(±)-1 (±)-2 (desired) 3 (undesired)

(±)-4 (undesired) 5 (undesired)

(±)-2 (+)-2 (−)-6

*Yields were calculated based on the amount of (±)-2.

(+)-2 (>98% ee)

temperature

3.0 100 °C

(±)-2

30%2

X solvent

1,4-dioxane

3 (±)-4 5

– 22% 18%

yields

1.

2.

3.

time

16 h
1.3 130 °C (microwave) 47%1 toluene 10% – –2 h

MeCN 40 °C 7: 82% yield, >98% ee1

Products with ≥10% yields are displayed.
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brief introduction on (−)-nidulalin A

isolation: from Emericella nidulans (ascomycetous fungus)
Kawahara, N.; Sekita, S.; Satake, M.; Udagawa, S.; Kawai, K. Chem. Pharm. Bull. 1994, 42, 1720.

bioactivity: inhibition of DNA topoisomerase II, IC50 = 2.2 µM
Sato, S.; Fukuda, Y.; Nakagawa, R.; Tsuji, T.; Umemura, K.; Andoh, T. Biol. Pharm. Bull. 2000, 23, 511.
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core skeleton
= dihydroxanthone

X (−)-nidulalin A: X = R = H
F390B: X =H, R = Ac
F390C: X =OH, R = H

structure of nidulalin A and other
dihydroxanthone natural products

total syntheses: Hosokawa (2009) and Porco (2024, discussed in this session)
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1.

step 1: mechanisms of the desired oxidation and the undesired overreactions
answer to the problem

1) when SeO2 was added in small excess amount (entry 1; optimal condition)
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2) when SeO2 was added in excess amount (entry 2)
Overoxidations proceed from allylic alcohol (±)-2 to give products (±)-4 and 5.
a) second allylic oxidation by SeO2 -> nucleophilic attack of allilic alcohol to SeO2

b) via nucleophilic attack of allylic alcohol to SeO2
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via allylic
transposition
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1,5-acyl shift

see page 2
5

Employment of a large excess amount of SeO2 was not appropriate
because of the overoxidation to dienone (±)-4 or xanthone 5.

step 2: acylative kinetic resolution using chiral benzotetramisole catalyst (2S,3R-HyperBTM)
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*Yields were calculated based on the amount of (±)-2.
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key to the different acylation speed between the two enantiomers (+)- and (−)-23): 
1) the comformation of acyliminium 27
2) the approaching directions and the interactions of 2 and 27 in the transtion state

i-PrCO2
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1) the comformation of acyliminium 27

S

N
N

Ph

i-Pr

O

H

nO
σ*S-C

N N

S O

Ph
i-Pr H

N N

S

O

Ph
i-Pr

H

==

no nO-σ*S-C interaction

good nO-σ*S-C interaction4)

N
H

N
Ph

H

i-Pr

S

i-Pr

O

N N
i-PrS

i-Pr

O

Ph

H
H larger 1,3-allylic-like

interaction

Ph group
= pseudo-axial5)

27 27a-1 27a-2

27b
27c

2) the approaching directions and the interactions of 2 and 27 in the transtion state
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The comformation of active
acyliminium 27 is restricted
to that illustrated as 27a,
defining the approaching
direction of substrate 2.

(+)-2

no reaction

(−)-2

esterified (−)-6
(+)-6: not obtained

(+)-TS1: less favored

– Alcohols (+)- and (−)-2 approach in Bürgi-Dunitz angle from the opposite side of bulky Ph on 27.
– Acyliminium 27 approaches so that its positive charge is stabilized by electron-negative oxygen.

(−)-TS1: more favored

(±)-7

2S,3R-HyperBTM A

detailed condition
not mentioned

40% ee

Reaction between A and (±)-7, which lacks the pseudo-axial H atom, resulted in poorer enantioselectivity.  This result
also indicates the importance of highlighted H atom for difining the direction of approach of acyliminium 27.
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27 causes steric repulsion with pseudo-axial H atom. 27 approaches from the opposite side of
pseudo-axial H atom.



-5-

step 3: desaturation with Bobbitt’s salt (4-acetamido-2,2,6,6-tetrametyl-1-oxo-piperidinium tetrafluoroborate, B)
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In both entries, the reactions were
performed in 24 hours.
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Based on the electrophilicity of oxygen of N=O moiety,6)

hydride transfer from Cβ-H to oxigen was proposed.
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2) another possible reaction mechanism (my proposal)
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partial racemization under high temperature in 1,2-dichloroethane and the effect of MeCN as a solvent (my proposal)
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It is proposed that the lone pair of MeCN stabilized this cationic transition states more effectively than BF4 anion due to
its smaller steric hinderance, leading to lowered reaction temperature.  Similar stabilization is also possible for cationic
transition state in mechanis 2).

(+)-7 partially turned into its enantiomer (−)-7 via retro-6π and 6π electrocyclizations at an elevated temperature.
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reaction temperature:
85 °C (1,2-dichloroethane)
/40 °C (MeCN)

lowered activation
energy in MeCN
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(−)-32 (>98% ee) (−)-33

85% yield, >98% ee
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Enantiopure (−)-32, which has 3-methylbutyrate on the allylic alcohol, underwent desaturation with B without any
racemization even at high temperature in 1,2-dichloroethane.  It is possible that the electron-withdrawing acyl group
prevented the retro-aldol reaction from (−)-33.
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Oxygen lone pair is 
not delocalized due to
electron-withdrawing 
COi-Bu group.
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too uphill
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