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First-Generation Approach (problem 1)

Second-Generation Approach

Third-Generation Approach (problem 2)
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0-1.  Introduction

Isolation:
Cephalotaxus harringtonia

structural features:
•  5/7/5/6/6/6-Fused hexacyclic scaffold
•  2 Bridged-lactone moieties
•  10 Stereocenters: 9 contiguous
•  2 Quaternary carbon centers

total synthesis:
Chen, P.; Chen, L.; Lin, H.; Jia, Y. J. Am. Chem. Soc. 2025, 147, 636-643.
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1.  LDA (1.2 eq), CH2CHCH2Br (10 eq)
0.  THF/HMPA, –78 °C to rt, 89%, dr = 3:1
2.
3.

A2.  HG-II (0.050 eq), CH2Cl2, 40 °C, 40%
A3.  LDA (2.0 eq), 1-2 (3.0 eq), THF/HMPA
A0.  –60 °C to rt, 75%, dr = 2:1

B2.  LDA (1.5 eq), 1-2 (2.0 eq), THF/HMPA
B0.  –60 °C to rt, 80%, dr = 10:1
B3.  HG-II (0.050 eq), CH2Cl2, 40 °C, 95%
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(1)  Please provide the reaction mechanisms for the following reactions.
(2)  Regarding Steps 2 and 3, please select the correct option from A or B within the box below.
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4.  1-5 (1.7 eq), LDA (1.2 eq)
0.  THF, –78 °C, 45%

Chen, P.; Chen, L.; Lin, H.; Jia, Y. J. Am. Chem. Soc. 2025, 147, 636-643.
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blue: a bulky substituent in the axial position
*the authors did not comment on the stereochemistry at the C8 position
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discussion 2: step 2, 3

2-0.  introduction
answer to question 1-(2): option B
•From the two steps of option A, the main product obtained is the diastereomer C8-epi-1-3, where the 
stereochemistry at the C8 position of compound 1-3 is inverted.  On the other hand, from the two steps of option B, 
compound 1-3 is predominantly obtained.

2-1.  reaction mechanism and stereoselectivity
2-1-1.  option A (incorrect)
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•  the reaction proceeds along path A 
because deprotonation from the back 
side (convex) is more advantageous.
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discussion 3: regioselectivity
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author’s opinion

•  Kinetically, it is considered more favorable for the reaction to proceed along path B, where deprotonation occurs 
from the site with a higher number of protons, as it is not sterically hindered. However, in this reaction, the enone 1-6' 
was not obtained.

•  The C-H bond at C11 is essentially perpendicular to the carbonyl group at C20, thus potentially 
facilitating the σ-π delocalization, so the C11 proton deprotonates more easily than the C1.

O
H

H
-> It is considered that the proton at the C11 position could also contribute to the electronic effects.

a picture that explans the author’s argument -> is this picture correct?
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•  Referring to the most stable conformation of 1-4 calculated using the macro model, the angle between the proton 
on C1 and the downward proton on C11 relative to the carbonyl group appears to remain largely unchanged.

1-4

seeing the molecule from below
seeing the molecule from the front
seeing the molecule from above
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•  the energy difference between 1-25 to 1-25’: 9.46 kcal/mol
•  van der waals radius of hydrogen: 120 pm = 1.20 Å
•  calculated at M06-2X/6-31+G(d) level

plausible explanation
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about 9.46 kcal/mol?

•  It is considered that, like 1-25’, the structure of 1-4 is distorted 
due to the repulsion between hydrogen atoms on the seven-
membered ring.  Therefore, it is considered that the reaction 
progressed in a way that alleviates this distortion, leading to a 
more stable transition state energy, which is kinetically favorable.

The most stable conformation of a compound (1-25 and 1-25’) with 
the same skeletal features as 1-9 and 1-9' was calculated.
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•  In 1-25', the steric repulsion between the hydrogen atoms of C11 and C13, as well as between C11 and C15, are 
thought to make it 9.46 kcal/mol thermodynamically less stable than 1-25.
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1.  Co2(CO)8 (1.5 eq), PhMe
0.  rt to 75 °C, 82%
2.  K2OsO4•2H2O (0.10 eq), NMO (3.0 eq)
0.  acetone/H2O (3/1), rt, 85%
3.  BzCl (1.5 eq), Et3N (5.0 eq), DMAP (0.10 eq)
0.  CH2Cl2, rt, 90%
4.  CH2CHMgBr (4.0 eq), CuBr•Me2S (2.0 eq)
0.  THF, –30 °C, 92%
5.  Sc(OTf)3 (0.30 eq), TMSCHN2 (5.0 eq)
0.  MS 4A (50 wt%), CH2Cl2, rt, 60%
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Please provide the reaction mechanisms for the following reactions.

Chen, P.; Chen, L.; Lin, H.; Jia, Y. J. Am. Chem. Soc. 2025, 147, 636-643.

[CoIII]
[CoIII]

OTBS

MeO2C

H

H

CoIII

CoIII

[CoIII]

[CoIII]

OTBS

MeO2C

H

H

CoIII

CoIII

[CoIII]

OTBS

MeO2C

H

H

CoIII

CoIII [CoIII]

[CoIII]

OTBS

MeO2C

H

H

CoIII

CoIII

O

+

2-8’[OsVIII]

O
OsVIII

O

O

O

OTBS

MeO2C

H

H O

H

H

O
OsVI

O

O

O

OTBS

MeO2C

H

H O

H

H

OOsVI

OH

O

O

HO

OTBS

H

H O

H

H

O
MeO

HO

HO

HO OsVI
OH

O O

O OsVI
O

O

– H2O

2-9 2-10 2-11

± H+

O OsVIII
O

O O

from
convex
face

OH2

H2O

-7-

H

H

H

H

KO OsVI
OK

O O

HO OsVI
OH

O O
O

N O
Me

O
N

Me
2 H2O

– CoI
2(CO)6

MeO2C
OTBS

H

H

H
O



OTBS

H

H O

H

H

O

O

CuBr•SMe2 MgBr+
– MgBr2, SMe2

Cl

O

-8-

OTBS

H

H O

H

H
O

O

O

– MeOH

2-12
step 2

N

N
N

O

N
2-13

2-14

step 3

Et3N

OTBS

H

H O

H

H
BzO

O

O

2-15

2

CuIMgBr

2-15’ 2-16

OTBS

H

H O

H

H
BzO

O

O

2-17

– CuIR

OTBS

H

H O

H

H
BzO

O

O

2-18

MgBr

+ H2O

OTBS

H

H O

H

H
BzO

O

O

2-19 step 4

TMSCHN2

O

O

BzO
O

H

H

H

OTBS
H

step 5

O
H

O

H

– DMAP

OTBS

H

H O

H

H
BzO

O

O

CuI

MgBr

R

R2

CuIII

R

R

MgBr
– MgBrOH

OTBS

H

H O

H

H
BzO

O

O

2-20

Sc(OTf)3 OTBS

H

H

H

H
BzO

O

O

O
Sc(OTf)3

H

N2
TMS

2-20’

TMS

work-up O

O

BzO
O

H

H

H

OTBS
H

2-23

reductive
elimination

2-22

2-21

– N2

•  Regarding the reaction mechanism of the addition and regioselectivity of the migration, please refer to 
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•  For the cobalt complex to coordinate from below to the olefin, the carbon-carbon bond highlighted in red must 
point in the equatorial direction.

•  The high regioselectivity of this reaction is believed to manifest during the addition step of trimethylsilyl 
diazomethane.  During addition, trimethylsilyl diazomethane is thought to approach compound 2-20 in such a way that 
the bulkiest TMS group points in the direction with the most steric availability, while the hydrogen atom points in the 
direction with the most steric congestion.
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