Problem Session (2) 2024.12.12 Yutaro Yamada

Please explain the reaction mechanism and determine the stereochemistry at C12 of 1-2 and 1-4.
(The stereochemistry at C12 of 1-3 is the same as that of 1-2.)
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Please explain the reaction mechanism.

1. LIN(TMS), (1.2 equiv), A (2.6 equiv)
THF, -10 °C, 71%
2. BH,CI=Me,S (1.3 equiv), Et,0, 0 °C;

4M NaOH/30% H>0, (6/5, excess)
EtOH, reflux, 77%
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1. B (1.6 equiv), NaH (1.35 equiv)
THF, 0 °C, 92% (E/Z = 2/3)*
2. i-BuyAlH (2.51 equiv)

CH.Cly, -78 °C, 77%
3. MeC(OEt); (6.94 equiv)
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* Two isomers were used in the following reactions
without separation.



Problem Session (2) -Answer- 2024.12.12 Yutaro Yamada
topic: Electrostatic effect

Theme: Isomerization controlled by lone pair-lone pair interaction
main paper: Kim, H.; Lee, H.; Lee, D.; Kim, S.; Kim, D. J. Am. Chem. Soc. 2007, 129, 2269.

1. Construction of an 8-membered ether ring
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The stereochemistry at C12 of 1-2 was cis relative to C6.

Discussion 1: Ring construction
1. Bond rotation of C6-C7

The enolate 1-5-Z, an intermediate for cyclization, contains multiple bulky substituents at C6 and C7 position.
The steric interactions among these groups are thought to control the conformation of an 8-membered ring
construction. Therefore, the bond rotation of C6-C7 was considered first.
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Construction of an 8-membered ring would occur between highlighted positions.

1-5-Z-d and e —> Highlighted positions are too far to react.

1-5-Z-a, b, c and f —> Highlighted positions are appropriate for cyclization so cyclization would occur. However,
1-5-Z-a and ¢ are unfavorable conformations for cyclization at room temperature compared to 1-5-Z-b due to
torsional strain. 1-5-Z-c and f are also unfavorable because of steric repulsion between the chlorine-substituted
allylic methylene and other substituents.

—-> Conformation of 1-5-Z-b was mainly considered.

2. Other bond rotation
2-1. C7-C8 and C8-C9 rotation
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3. In the case of 1-5-E 1-2-trans (not obtained)

When discussing the cyclization conformation of 1-5-Z in discussion 1-1, steric hindrance around the enolate part
was disregarded because it is highly planar (highlighted in | ). Therefore, the same discussion regarding the
conformation for cyclization in discussion 1-1 can be extended to 1-5-E.
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2. Isomerization
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Discussion 2: Stereoselective protonation
1. Results of monocyclic ether ring
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Although the detail of the reaction was not mentioned, 1-8-cis was obtained as a mojor product.
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2. Stereoselective isomerization of bicyclic ether ring ﬁ inside the ring
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In 1-3-cis’-a, the lone pairs of two oxygen atoms face each other, resulting in electrostatic repulsion. To alleviate
this repulsion, ring flip occurs, and 1-3-cis’-b is formed. However, 1-3-cis'-b has a large steric hindrance. This is
minimized through keto-enol tautomerization, leading to the formation of 1-4-trans.

Alternatively, if keto-enol taumerization occurs before the ring flip of 1-3-cis’-a, 1-11 is generated via 1-10. Because
of electrostatic repulsion in 1-11, ring flip occurs, resulting in formation of 1-4-trans. The ring flip of 1-10 was not
considered because the half-life of this enol is assumed to be shorter than the time required for the ring flip.

Theme: Reqioselectivity and stereoselectivity controlled by electrosteric effect
main paper: Ng, F. W; Lin, H.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 9812.

1. Regioselective hydroboration
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2. BH,Cl*Me,S (1.3 equiv), Et,0, 0 °C;
H 4M NaOH/30% H,0, (6/5, excess)
EtOH, reflux, 77%

: CHO -
tBuO f 3. (COCl), (2.0 equiv), DMSO (3.15 equiv)
CH20|2, -78 OC;
21 EtsN (5.35 eq), -78 °C to 0 °C, 99%
?
P\‘OEt
OEt

NO, A -4-




Reaction mechanism:

LiN(TMS),
—HN(TMS),
®
H Li OEtNo2
t-BuO Y
S~ () ) &
H 1
-BuO A H H "
2-1 2-6

N02 BH2C|'M€28;
NaOH, 30% H202

.
_(Et0),P(O)OLi ) n NO2 N O Discussion 3:

Reaction mechanismHO"
2-8 regioselectivity

step 1 step 2
o)
Cl +\C§/ \Cg)/
o R SNC
o o) GO Cl
otBuH NO2 otBuH NO2 otBuH NO2
@ +Et3N
CI"\H H R ¥
TS ) () ()
_HCl \ rC§>~o- ~EtzN-HCI @/i)—/j-« ~Me,S
b 210 H 2-11 0 2.12 (=2-2)
I NEt, —
step

Discussion 3: Reaction mechanism and regioselectivity of hydroboration
1. Hydroboration

Scheme 3 Generally, regioselectivity of hydroboration is
H BR2 H BR2 y, reg y y

- controlled by steric and electronic effect.
H-BR> 3+—\8- 1. Boron adds to the less substituted end
(steric effect).

2.13 2.14 2.15 2. The partial positive charge that arises in the
R = alkyl or aryl transition state is generated at the more
substituted end (electronic effect).

2. Regioselective hydroboration " 2

Boron reagents;

Ot-BuH NaOH, 30% H,0, Ot-BuH Ot-BuH
EtOH ruflux
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X H (2-16) X=H (2-17) X=H (217"
NO, (2-8) NO, (2- 9) NO, (2-9')
Table (desired) (undesired)
entry Boron reagents ratio (2-17:2-17" or 2-9:2-9")

1.2-16 BH3"THF (1.11 eq) 4:1

THF, 0 °C
2.2-16 9-BBN (1.15 eq) 6:1

THF, rt

3.2-16 BH,Cl-Me,S (1.12 eq) 16:1

Et,0, 0°C
4.2-8 H,Cl"Me,S (1.3 eq) 11:1




entry 1 to 3 —> The higher the electrophilicity of borane might enhance the electro-deficient in transition state,
resulting in a better regioselectivity.
entry 3 and 4 —> Electron withdrawing NO, group on the phenyl ring decreased regioselectivity.
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In the case of 2-18, C3-C14 olefin stabilizes partial positive charge in transition state. The homoallylic stabilization
effect could be more pronounced when a more electrophilic borane is used due to larger partial positive charge. On
the other hand, inductive effect on aryl group results in less electron rich of C3-C14 olefin so stabilized effect is

weaker.

3. Confimation of homoallylic stabilization effect

Scheme 4
Ot-BuH BH,Cl*MesS (1.04 eq) OtBuH OtBuH
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If C3-C14 olefin is reduced, regioselectivity of hydroboration drastically decreases.

4. Reaction mechanism
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2. [3,3]-sigmatropic rearrangement controlled by electrostatic effect
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Reaction mechanism:
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1. [3,3]-sigmatropic rearrangement using 2-35-Z as a substrate
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24
not obtained obtained (single isomer)

2-36 2-35-Z-a

Because of the steric repulsion between proton of C7 and ketene acetal part in 2-35-Z-a, 2-36 |||

would not be obtained. -7-



2. [3,3]-sigmatropic rearrangement using 2-35-E as a substrate

<steric effect> 3 3]-sigmatropic [3,3]-sigmatropic
rearrangement rearrangement

_ 2-35-E-a
not obtained obtained (single isomer)

2-4
The highlighted proton in gray, potentially causing steric repulsion with the ketene acetal, is sp? hybridized in

2-35-E-a and sp?® hybridized in 2-35-E-b. Therefore, based on steric factors, 2-36 would be expected to form
selectively. However, 2-4' was isolated as the sole product instead of 2-36.
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In 2-35-E-a, unfavorable interaction between the
polarized carbon of ketene acetal with a higher
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3. Confirmation of electrostatic interaction
Scheme 5
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