Halogen-Halogen Interaction

2024.11.22. Literature Seminar D2 Hibiki Asai

Contents

1. Introduction (Halogen-Halogen Interaction)

2. Activation of a Metal-Halogen Bond by Halogen Bonding (Main paper)

Dose Halogen-Halogen Interaction Exist?

Halogen atom seems to interact with halogen-containing solvent. -> How dose halogen atom interact with halogen atom?

Suggestion of Halogen-Halogen Interaction

in 1819¹⁾

1₂

ıΘ

<u>|_|</u>_|_Θ

Halogen-Halide interation?

in 1928²⁾

Orthorhombic ("直方晶系") crystal of l₂

Orthorhombic crystal Br₂ at -150 °C

 I_3^{Θ}

in 1936³⁾

Orthorhombic crystal Cl₂ at -160 °C

in 1952⁴⁾

Other diatomic molecules (H₂⁵⁾, N₂⁶⁾, etc.): hexagonal ("六方晶系") -> There is the interation between halogen molecules?

1) Pelletier, P. Ann. Chim. Phys. 1819, 10, 142. 2) Harris, P. M.; Mack, E.; Blake, F. C. J. Am. Chem. Soc. 1928, 50, 1583. 3) Vonnegut, B.; Warren, B. E. J. Am. Chem. Soc. 1936, 58, 2459. 4) a) Collin, R. L. Acta Crystallogr. 1952, 5, 431. b) Tsirelson, V. G.; Zhou, P. F.; Tang, T. H.; Bader, R. F. W. Acta Crystallogr. Sect. A. Found. Crystallogr. 1995, 51, 143. 5) Barrett, C. S.; Meyer, L.; Wasserman, J. J. Chem. Phys. 1966, 45, 834. 6) a) Bleak, J.; Lesar, R.; Etters, R. D. J. Chem. Phys. 1990, 92, 5430. b) Press, W.; Huller, A. J. Chem. Phys. 1978, 68, 4465.

Model for Closely Packed Halogen Molecular

Nyburg's model	F	CI	Br	I.	
van der Waals radius ¹⁾	1.47	1.76	1.85	1.98	
Major axis ²⁾	1.38	1.78	1.84	2.13	
Minor axis ²⁾	1.30	1.58	1.64	1.76	oblate shape
Δaxis	0.08	0.20	0.20	0.37	[Å]
				C	Oblate shape enables close packing?
Williams's model ³⁾					
lattice energy ("格子	エネルギー	-") of <mark>Cl</mark> 2			
empirical force model ovserved energy (no partial bond energy)					

−17.2 kcal/mol −31.9 kcal/mol -> Δenergy = −14.7 kcal/mol

Attractive non-bonding interaction exists?

*lattice energy: the energy charge upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state (Wlkipedia).

1) Bondi, A. J. Phys. Chem. **1964**, 68, 441. 2) Nyburg, S. C.; Faerman, C. H. Crystallogr. Sect.B **1985**, 41, 274. 3) Williams, D. E.; Hsu, L. Y.; Acta Crystallogr. Sect. A Found. Crystallogr. **1985**, 41, 296.

Interaction Angle of C-X···X-C

Williams's model

Calculation of Electrostatic Potential

Williams's model

hole of positive potential

Hole of positive potential is called as " σ -hole"

Calculation of Electrostatic Potential

Exchange-repulsion energy is anisotropic. ->Clorine atom is oblate shape?

Coupling two Models

Nyburg's model and Williams's model should be treated as the same concept

Calculation of Electrostatic Interaction (I)

Calculation of Electrostatic Interaction (II)

at energy	mini	mp2/cbs		
		θ	r	energy
	٠	156 °	3.43 Å	-0.66 kcal/mol
Br-CH ₃	-	153 °	3.58 Å	−1.24 kcal/mol
		147 °	3.86 Å	−1.81 kcal/mol
CI—Ph		152 °	3.38 Å	−1.25 kcal/mol
<mark>Br</mark> —Ph	×	150 °	3.65 Å	−2.09 kcal/mol
l—Ph		148 °	3.81 Å	−2.16 kcal/mol
ci— <u></u>	*	142 °	3.46 Å	−0.99 kcal/mol
Br—	•	140 °	3.65 Å	−1.30 kcal/mol
I —≡		144 °	4.04 Å	−1.45 kcal/mol

 $\mathbf{R} - \mathbf{X} - \mathbf{R}$

van der Waals radius CI: 1.76 Å, Br: 1.85 Å, I: 1.98 Å

 θ ($\theta_1 = \theta_2$)

plot of r, at minimum energy about certain θ

halogen interaction seems I > Br > Cl, sp² > sp > sp³ (*ipso* carbon)

Calculation of Electrostatic Potential (I)

Interaction between negative surface and positive surface

Calculation of Electrostatic Potential (II)

more s charactor of *ipso*-carbon

-> more electrodefient halogen

-> increase positive potential at end cap, whereas decrease negative potential at ring

For strong interaction, more positive potential at end cap and more negative potential at ring are necessary. Therefore, s charactor of *ipso*-carbon should be moderate to interact strongly, which causes the the order of interaction strength as $sp^2 > sp > sp^3$.

Anisotropy caused by sp I atom?

Pernpointner, M.; Zobel, J. P.; Fasshauer, E.; Sil, A. N. Chem. Phys. 2012, 407, 39.

Hetero-Halogen Halogen Interaction (I)

X-ray data base analysis

		θ2	θ1	
R-X	$\begin{array}{c} X_{\text{light}} - R \\ heavy \theta_2 \end{array}$	$X_{heavy} - X_{light} - R$	$R - X_{heavy} X_{heavy} - X_{heavy} $	ght
	Type Ι (θ₁~θ₂)	Type II (θ ₁ <θ ₂)	Type II (θ ₁ >θ ₂)	
CIF	18	8	9	-
Br•••F	4	4	8	
 ••• F	2	0	6	
Br•••Cl	4	13	23	
•••C	0	1	5	
l•••Br	0	1	1 1	number of interactions

Type II ($\theta_1 > \theta_2$) becames favored as heavier halogen involes interaction.

Hetero-Halogen Halogen Interaction (II)

δ+

repulsion between δ^{-} and δ^{-}

interaction between less positive CI and I

more positive δδ+ Ò δ-R٠ δ-

Type II ($\theta_1 > \theta_2$, favored)

interaction between more positive | and Cl

Halogen Halide Interaction

		r	θ	ΔΕ	
	FΘ	2.344 Å	179.7 °	−14.28 kcal/mol	$\delta^+ \delta^-$
no metal	cP	3.093 Å	179.8 °	−6.28 kcal/mol	x ⁰ R
	Br	3.309 Å	175.6 °	−5.22 kcal/mol	ο Halide intracts with σ-hole of halogen.
	\mathbf{F}^{Θ}	2.243 Å	180.0 °	−27.99 kcal/mol	
⊕ Cu	c	2.930 Å	180.0 °	−16.87 kcal/mol	
	Br	3.119 Å	180.0 °	−15.12 kcal/mol	
			b97-′ b97-′	1/lanl2dz(pp) (for Cu) 1/aug-cc-pvdz (for otl	ners)

Contents

1. Introduction (Halogen-Halogen Interaction)

2. Activation of a Metal-Halogen Bond by Halogen Bonding (Main paper)

Introduction of Prof. Stefan M. Huber

Prof. Stefan M. Huber

2003 B.S. @ Friedrich-Alexander Universität Erlangen-Nuremberg (Prof. Robert Weiss) 2007 Ph.D @ Friedrich-Alexander Universität Erlangen-Nuremberg (Prof. Robert Weiss) 2007~2008 postdoctoral research@ the University of Minnesota (Prof. Christopher J. Cramer, Prof. William B. Tolman) 2008 postdoctoral research @ the Université de Genève (Prof. Laura Gagliardi)

2008 postdoctoral research @ the Université de Genève (Prof. Laura Gagliardi)

2009 postdoctoral research @ Friedrich-Alexander Universität Erlangen-Nuremberg (Prof. Harald Gröger)

2009~2013 independent research @ Technische Universität München

2014~2021 Associate Professor @ Ruhr-Universität Bochum

2022~ Full Professor @ Ruhr-Universität Bochum

Research topic: Biomolecule, Organocatalysis (Hydrogen bond, Halogen bond, Chalcogen bond)

Previous Halogen Bond Catalyst

Preorganized bidentate catalyst gave better results.

Jungbauer, S. H.; Huber. S. M. J. Am. Chem. Soc. 2015, 137, 12110.

X-Ray Structural Analysis of Catalyst

1) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. *Angew. Chem. Int. Ed.* **2011**, 50, 7187. 2) Jungbauer, S. H.; Huber. S. M. *J. Am. Chem. Soc.* **2015**, *137*, 12110. 21

X-Ray Structural Analysis of Catalyst

Halogen-halogen interaction can activate C-CI bond.

Can Metal-Cl bond be activated?

1) Jungbauer, S. H.; Huber. S. M. *J. Am. Chem. Soc.* **2015**, *137*, 12110. 2) Wolf, J.; Huber, F.; Erochok, N.; Heinen, F.; Guerin, V.; Legault, C. Y.; Kirsch, S. F.; Huber, S. M. *Angew. Chem. Int. Ed.* **2020**, *59*, 16496.

Au^I-Catalyzed Cyclization of Amide (1)

entry	activator	conversion of A	k _{rel} *
1	none	<5%	-
2	AgOTf	5%	100
3	AgBF ₄	14%	180
4	AgPF ₆	44%	740
5	NaBAr ^F 4	95%	3500
6	Me ₄ NBAr ^F 4	<5%	15

*relative initial rates after 70 min, referenced to 3

Bulkiness of counteranion was important.

Au^I-Catalyzed Cyclization of Amide (3)

(Ph₃P)AuCl (2 mol%) activator (2 mol%) CDCl₃, rt, 3 h

entry	activator	conversion of A	k _{rel} *
10	4a	92%	3100
13	5	<5%	15
14	l ₂ (1 mol%)	<5%	-

*relative initial rates after 70 min, referenced to 3

Cationic iodine atom was essential for the reaction.

¹⁾ Jungbauer, S. H.; Huber. S. M. *J. Am. Chem. Soc.* **2015**, *137*, 12110. 2) Wolf, J.; Huber, F.; Erochok, N.; Heinen, F.; Guerin, V.; Legault, C. Y.; Kirsch, S. F.; Huber, S. M. *Angew. Chem. Int. Ed.* **2020**, *59*, 16496.

Kinetic Plot of Cyclization of Amide

Au^I-Catalyzed Cyclization of Enyne

Similar results were observed about cyclization of enyne C.

31P NMR Shift

in CDCI₃

а

(Ph₃P)AuCl

С

1) Huber. S. M. et al. Angew. Chem. Int. Ed. 2020, 59, 16496. 2) Maier, M. E. et. al. Chem. Eur. J. 2012, 18, 14732.

DFT Calculation

m06-2x-d3 def2-TZYP-(D), SMD18 (CHCl₃)

Summary

1) Awwadi, F. F.; Willett, R. D.; Peterson, K. A.; Twamley, B. *Chem. Eur. J.* **2006**, *12*, 8952. 2) Wolf, J.; Huber, F.; Erochok, N.; Heinen, F.; Guerin, V.; Legault, C. Y.; Kirsch, S. F.; Huber, S. M. *Angew. Chem. Int. Ed.* **2020**, *5*9, 16496.

Apendix

1H NMR of 6, 7, and 7_{Ar}

Synthesis of 4

