
Problem Session (4) -Answer- 2024.10.7. Jaejoong Han
Topic: Construction of cyclopropane from epoxide

Hodgson, D. M.; Salik, S.; Fox, D. J. J. Org. Chem. 2010, 75, 2157.
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1. ethyl formate (3.0 eq), NaOMe (3.0 eq), toluene, 0 ºC;
1-1, toluene/THF, 25 ºC, 82% (dr at C6 = 93:7)

2. LiAlH4 (2.0 eq), Et2O, reflux, 51%
3. Et3N (2.0 eq), MsCl (2.0 eq), CH2Cl2, 0 ºC;
LiCl (10 eq), CH2Cl2/acetone, 0 ºC, overnight, 76%

4. Mg (4.0 eq), THF, 25 ºC, 1,2-dibromoethane (3 drops);
1-3 (0.8 eq), CuI (10 mol%), THF, −78 to 0 ºC, 50%

5. NaOH (1.2 eq), MeOH, 25 ºC, 77%
6. n-BuLi (2.1 eq), 2,2,6,6-tetramethylpiperidine (2.1 eq)

t-BuOMe, −78 to 25 ºC, 89%
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DIscussion 1: Formylation and epimerization
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Under these conditions, formylation and epimerization at C6 occurs.
The order of these reactions and stereoselectivity will be discussed below.
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*The temperature was not mentioned, though it is likely room temperature.
Epimerization of 1-25 under the same conditions as this problem's formylation step was attempted.
Epimerization partially occurred, though 1-4 wasn't the major product.
This may be because deprotonation at C6 is slow due to reduced acidity at C6.
From this result, epimerization at C6 should occur before the formylation reaction.
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The equivalent favours 1-1 because both isopropyl group and methyl group are equatorial-oriented.
Thus, thermodynamical stability of 1-1' and 1-29' cannnot explain the ratio of 1-4 and 1-25.
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As the reaction solvent is MeOH, this aldol reaction proceeds via open transition state rather than
Zimmerman-Traxler transition state.

Formylation can undergo from 1-30 via path a-b, from 1-31 via path c-d.
There is a steric repulsion of hilighted methyl group in path a, so this path is less favourable than path d.
Formylation proceeds via twisted-boat conformation in path b and c, so these paths are unfavourable.
So, I think path d is most favourable.
(The author calculated the free energies of transition state of path a and d, and the activation energy of path a
is 2.1 kcal/mol higher than that of path d).

In my opinion, formylayion occures exclusively via path d to afford only 1-4.
And then, partial epimerization occured from 1-4 to afford 1-25 as a minor diastereomer.
If formylation from 1-28 proceeds, retro-aldol reaction would generate 1-28 again.

DIscussion 2: Stereoselective cyclopropanation via lithium carbenoid
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The auther proposed TS-1-1 via chair-like transition state4), in which C-O σ* and C=C π orbitals are pararel5).
Take orbital interations into account, the mechanism should be someweher between path a and path b.
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In this case, if path b dominates over path a, and also the equivalent between 1-42 and 1-43 is fast,
1-41 could be obtained via allyl lithium intermediate 1-44.
So, I think path a is more favourable than path b
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2-3. Rationale of stereoselectivity of cyclopropanation
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Due to steric repulsion between H atoms, the reaction proceeds from conformation 1-1 rather than 1-2.
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The reaction solvent is MeOH, so pKa value in H2O seems to reflect the actual reaction system than that in DMSO.
pKa Value of oxindole in H2O is not reported, though the value could be similar to that of H2O in the analogy to
other active methylene compounds like diethyl malonate (16.4 in DMSO, 12.9 in H2O).
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Usually, this cis-trans isomerization via diradical species occurs at high temperature above 200 ºC6).
However, both vinyl radicals of 2-28 are stabilized by neighbouring electron withdrowing groups.
So, this isomerization occurred at 90 ºC.
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