Problem session (3) -answer- 2024/06/29 Mizuki Sawada
Topic: Total synthesis of daphnillonin B
Introduction: Overview of synthetic route of daphnillonin B
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Reaction mechanism

1. N-bromosuccinimide (1.2 eq)
NaHCO; (1.5 eq), NaOAc (3.0 eq)
THF/H,0 (4/1), 0 °C; 0

2 N aqg. HCI (to pH 3), 0 °C, 77% H
2. Boc,0 (1.5 eq), DMAP (0.050 eq)
CH,Cl,, 0 °C to 25 °C; ! @

EtzN (1.0 eq), 25 °C, 77%
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™S A 3. Grubbs Il (0.050 eq), toluene, 155 °C;
AcO I . . . .
H tris(trimethylsilyl)silane (2.2 eq)
AIBN (0.50 eq), 120 °C, 55%

4. Sml, (2.0 eq), H,0 (2.2 eq), THF, 78 °C
H

Cl-C 5. p-TsOH+H,0 (0.80 eq), CH,Cl,, 0 °C to 40 °C
3 W/N 6. Et3N (13 eq), O, atmosphere, CH,Cls, 25 °C; O
o) 0] P(OEt); (2.5 eq), 25 °C, 25% (3 steps)
1-3 7. Coy(CO)g (1.5 eq), CO (1 atm), MeCN, 25 °C to reflux;
ICI (4.0 eq), 25 °C, 65%
R= — C12 ketone is more electrophilic than C1 ketone
( ﬁ_\—:—‘—TMS> due to the inductive effect of the highlighted O atom.
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The HOMO energy of enolate of 1-32¢ is higher than that of 1-32b.
1-33c is more stable than 1-33b due to the longer conjugation.
->1-32c is moHre regctable with O, than 1-32b.
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Discussion: Radical cyclization with Grubbs catalyst

1. Atom transfer radical addition (ATRA) with Ru(ll) catalyst
The first report of Ru(ll) catalyzed ATRA

Ru''Cly(PPhs); (H3C)sC C(CH3)3
R-1  (0.5-1 mol%)
5
D-1 . (H3C)3C C(CH3)3
CCly, 80 °C D-2a (x = CI). 74% galvinoxyl
CHCIs, 140 °C D-2b (X = H): 50%

It was reported that the addition of small amount of galvinoxyl was completely inhibited the above reaction.
Matsumoto, H.; Nakano, T.; Nagai, Y. Tetrahedron. Lett. 1973, 51, 5150.

Proposed reaction mechanism (see also Appendix)
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Das, K.; Dutta, M.; Das, B.; Srivastava, H. K. Kumar, A. Adv. Synth. Catal. 2019, 361, 2965.

2. ATRA with ruthenium benzylidene complex

One of the first reports of Grubbs catalyst catalyzed ATRA

catalyst (2.5 mol%) Cl PCy, OH
CHCl3, 65 °C LH cl.,| tBu t-Bu
~pt chHe O
Ph
D-3 catalyst D-4 I|3Cy3
G-1 100%
R-1 < 5% Grubbs | (G-1) BHT

Compound D-4 was obtained in better yield with G-1 than R-1.
It was reported that the addition of BHT or galvinoxyl severely limited the formation of D-4.

Tallarico, J. A.; Malnick, L. M.; Snapper, M. L. J. Org. Chem. 1999, 64, 344.

An example of radical cyclization of trichloroacetamide to enol acetate
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Diaba, F.; Martinez-Laporta, A.; Bonjoch, J. J. Org. Chem. 2014, 79, 9365.



3. The active Ru species for ATRA with ruthenium benzylidene complex
3-1. Investigation of active Ru species for ATRA by Grubbs’s group
Lee, J.; Grandner, J. M.; Engle, K. M.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2016, 138, 7171.

3-1-1. ATRA with Ru benzylidene catalysts G-1, G-2 and G-3

0 catalyst (7.5 mol%)
CHCl3, 65 °C
)Y \O%

~o /-Pr i-Pr
ull— TH benzylidene
D-7 D-8 proton
PCy3
G-3
decomp. of catalyst (%)* conv. of D-7 (%)
catalyst  30min 90 min 30min 2h  YieldofD-8in2h (%)
G-1 ~15 ~50 ~30 89 89
G-2 <5 ~10 ~20 45 7
G-3 ~40 ~100 ~70 95 94

* Decomposition of the catalysts was monitored by the dissapearance of
"H NMR peak of benzylidene proton.
faster decomposed catalyst -> faster conversion of D-7 and better yield of D-8

3-1-2. ATRA and ring closing metathesis (RCM) with activated G-3

Preactivation CHCls, 65 °C
G-3 : activated G-3
disappearance of benzylidene peak in "H NMR
ATRA o catalyst (7.5 mol%) o
CHCIs, 65 °C -
Cl ¢l
D-7 D-8
catalyst conv. of D-7 in 30 min (%) yield of D-8 in 2 h (%)
G-3 ~70 94
activated G-3 ~85 93

CDCl3, 30 °C
_ X 0% conversion of D-9
D-9 D-10

The results shown in sections 3-1-1 and 3-1-2 indicate that new Ru species (= activated G-3)
without benzylidene moiety catalyzes the ATRA.

3-1-3. Proposed new ATRA-active Ru species and supporting experimental results

(1) Alkyl halide triggered the decomposition of G-3. i—Pr/_\ ’g’r
solvent, additive, 65 °C y N N
G-3 decomposition of G-3 . .

RCM EtO,C. CO,Et activated G-3 (10 mol%) Etoch EcozEt

i-Pr C@ i-Pr
SIPreHCI
solvent additive decomp. of G-3 in 1 h(%) note
CDCl3 none ~100 SIPreHCI was isolated.

CgDg none ~0 6



(2) The excess PCyj; suppressed the ATRA.
o G-3 (7.5 mol%), additive (5 eq to G-3) o

CHCls, 65 °C o
Cl

Cl
D-7 D-8

additive  conv. of D-7 in 30 min (%) vyield of D-8in 2 h (%)

none ~70 94
PCy, ~35 ~2
(3) X-ray structure of decomposed G-1 .,\‘
CHClj, 65 °C; . 4
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(4) Proposed new ATRA-active Ru species: Ru,Cl,(PCy3),
3-2. Proposed decomposed pathway of Ru benzylidene complex (my opinion)
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-Pr .
I D-12 G 3PC¥;3 2 decomposition of NHC
=2 0rl=s  (see below)
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CI,,,R ' carbenoid cl RUICIPCya + éCI R
u'— ol u
CI”" —“py, (by insersion into C|"|Q“ D-‘?S Yo D-126
PCys solvent?) PCys
D-13 D-14

coordinative unsaturation

unstable due to the loss of NHC . .
-> high reactivity

(strong electron donation ligand)

Irreversibe dissociation of NHC ligands seem to triger the decomposition of carbenoid complex D-13.

In section 3-3-1 (2), excess PCy3 would be coordinate to D-13 and prevent the decomposition of D-13.
The irreversible dissociation of ligands mayl contribute to the higher reactivity of Ru benzylidene catalysts
than Ru complex without carvene ligands.

Decomposition of NHC (1): in the case of Grubbs’s paper (G-3, CHCI3, 65 °C)

O e P
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D-17 Cl D-19 (isolated)
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In the case of low reaction temperature (65 °C), the dissocination of NHC ligands would be slow and the
concentration of the free ligands would be low.
Therefore, it is seemed that carbene insersion into abundant CHCI; proceeds rather than dimerization.



Decomposition of NHC (2): In the case of Grubbs’s paper (G-2, toluene, 155 °C)

Ar Ar
In the case of high reaction temperature (155 °C), the

A —N/ \N—A dimerization [ > < j dissocination of NHC ligands would proceed quickly and the
2 Ar NS r free ligands would be abundant in the reaction mixture.
A A Therefore, it is estimated that carbenes can dimerize easily.
r r

D-20

4. Proposed reaction mechanism for step 3 (see also Appendix)
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Appendix: BDE of Ru""-CI bond
Question: In the following proposed reaction mechanisms, do PM-4 and D-26’ abstract Cl from R-2’ or D-23,
not from CCl, or D-227?

Proposed reaction mechanism (page 5) or CI—CCly 77
(‘C|—fl\?u'”CI L
A CI C R'Z’ CI C
CIDC% ~Ru'CI,L &;'3\\9\% —— ZRACLL i \)\Ph
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— " g}
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Proposed reaction mechanism for step 3 (page 8)

CI—RU"ICI,(PCys),

AcO AcO
H

/_\ N —
RU'Cly(PCy3), Cl H Ru ;_E;PC%M Cl
p21 C—R N Cl)'}]/"‘
o)

Cl
o b22 O O D-24
Calculated BDEs of red bond

Lail, M.; Gunnoe, T. B.; Barakat, K. A.; Cundari, T. R. Organometallics 2005, 24, 1301.
(/\\\ QO (/\‘ CO

_NCMe N~ " _NCMe
<\\ <\\ Ru”'
N : \ N : ~u

Me Me
e} B N\ / \ / Calculation level:
B3LYP/SBK(d)
48.6 kcal/mol 23.2 kcal/mol
Reported BDEs of red bond
(n°-CsMes)(PMeg),Ru''-Cl  <33.0 kcal/mol CI-CCl3  70.9 kcal/mol
3
(n°-CsMes)(PMes),Ru'-Me  34.0 kcal/mol CI-CHCIl, 74.4 kcal/mol
4

Estimation BDEs of Ru''-Cl bond of R-2’ and D-23

Cl—Ru'CIy(PCys),
D-23

R-2
(1) comparison of 3 and 4 -> The BDE of Ru'-Cl bond is similar to that of Ru'-Me.
-> The BDE of Ru'"-Cl bond of R-2’ and D-23 can be assumed to be around 23.2 kcal/mol (the BDE of Ru"'-Me of 2).
(2) comparison of 1 and 2 -> The BDE of Ru'"-Me bond is lower than that of Ru'-Me.
-> The BDE of Ru"-Cl bond of R-2’ and D-23 can be assumed to be lower than 33.0 kcal/mol (the BDE of Ru'-Cl of 3).
Judging from estimations (1) and (2), the BDE of R-2’ and D-23 can be assumed to be lower than about 30 kcal/mol.
Since the estimated BDE of Ru'-Cl bond of R-2’ and D-23 is much lower than that of C-Cl bond of CCl4 or CHClj, in
terms of BDEs, it seems that PM-4 and D-26’ abstract Cl from R-2’ or D-23, not from CCl, or D-22. 9



