Molecular Complexity

Literature Seminar 2024/06/15

Yuuki Watanabe

Contents

1. Development of indexes

JOC The Journal of Organic Chemistry

Molecular Complexity and Retrosynthesis

John R. Proudfoot*©

2. Application

Contents

1. Development of indexes

JOC The Journal of Organic Chemistry

Molecular Complexity and Retrosynthesis

John R. Proudfoot*®

2. Application

John R. Proudfoot

John Proudfoot, Ph. D.

Research Area in Stanford University

- 1. Structure determination of steroids
- 2. (Bio)synthesis of new steroids

Education

1984?~1987:Ph. D @Stanford University (Prof. Carl Djerassi) 1987~2017: Director of medicinal chemistry @ Boehringer Ingelheim Pharmaceuticals Inc: Ridgefield, CT, US 2017~: Consultant @Discoverybytes LLC: Newtown, CT, US

Research Area in Pharmaceutical Company

- 1. Medicinal Chemistry
- 2. Drug Design
- 3. Data processing

Prof. Carl Djerassi

nevirapine (anti-HIV-1 drug)

1. http://www.sbchem.kyoto-u.ac.jp/suginome-lab/jp/index.php?%E3%83%9B%E3%83%BC%E3%83%A0 3

Compound – What do you think?–

Index for Drug Discovery

In the drug discovery, the \bigcirc polarity, \bigcirc specificity, and \bigcirc greenness of synthetic route are important. \rightarrow The indexes corresponding to these factors are developed.

1 polarity

- Lipinski's rule of 5

② specificity

- F_{sp3}, F_{Cstereo}

 $F_{\rm sp^3} = \frac{\text{the number of sp^3 carbon atom}}{\text{total number of carbon atom}}$ $F_{\rm C_{stereo}} = \frac{\text{the number of stereocenters}}{\text{total number of carbon atom}}$

③ greenness of synthetic route

- PMI (Process Mass Intensity)

 $PMI = \frac{total \text{ amounts of materials (reagents, solvents...)}}{amounts of product}$

- The key, high-level metric for evaluating and benchmarking progress towards more sustainable manufacturing.
- 1. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
- 2. Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
- 3. Jimenez-Gonzalez, C.; Ponder, C. S.; Broxterman, Q. B.; Angew. Chem., Int. Ed. 2021, 60, 12819.

Indexes for chemists

1. https://web.stanford.edu/group/pawender/function-oriented-synthesis.html

2. Watanabe, Y.; Morozumi, H.; Mutoh, K.; Hagiwara, K.; Inoue, M. Angew. Chem. Int. Ed. 2023, 62, e202309688.

6

Define Molecular Complexity

7

SCScore

SCScore: Based on precedent reaction knowledge (12 million reactions in Reaxys) Assuming that the complexity of products should not be less than the complexity of reactants.

$$\begin{split} & \operatorname{SCScore}(m) \equiv f(m,\theta) \\ & f(P,\theta) \geqq \max\{f(R_i,\theta)\}_i \; \forall \; (R_1 + R_2 + \ldots + R_n \to P) \\ \end{split} \qquad \begin{array}{l} & \mathsf{P: Product} \\ & \mathsf{R: Reactant} \\ \end{array} \end{split}$$

Coley, C. W.; Rpgers, L.; Green, W. H.; Jensen, K. F. J. Chem. Inf. Model. 2018, 58, 252.

MeanComplexity

MeanComplexity: Developed by Merck

- Based on the knowledge of chemists
- Comparing complexity (not synthesizability)

Merck developed a system for predicting PMI based on the MW and MeanComplexity to judge the efficiency of synthetic routes.

Problem: For the complex molecules,

 $\text{SMART-PMI} \coloneqq 0.13 \cdot \text{MW} + 633$

Sheridan, R. P.; Zorn, N.; Sherer, E. C.; Campeau, L.-C.; Chang, C.; Cumming, J.; Maddess, M. L.; Nantermet, P. G.; Sinz, C. J.; O'shea, P. D. *J. Chem. Inf. Model.* **2014**, *54*, 1604.

SCScore v.s. MeanComplexity

HO OH OH OH OH

SCScore: 1.249 meanComplexity: 3.105

SCScore: 4.262 meanComplexity: 1.413

SCScore: the complex natural products might be vey low score because they are isolated and used for the manipulation as starting material.

On the other hand, drugs are usually final target molecules, so they have high score.

→MeanComplexity is more suitable for the organic synthesis/chemistry.

1. Coley, C. W.; Rpgers, L.; Green, W. H.; Jensen, K. F. J. Chem. Inf. Model. 2018, 58, 252.

 Sheridan, R. P.; Zorn, N.; Sherer, E. C.; Campeau, L.-C.; Chang, C.; Cumming, J.; Maddess, M. L.; Nantermet, P. G.; Sinz, C. J.; O'shea, P. D. *J. Chem. Inf. Model.* 2014, *54*, 1604.

Bertz Complexity C_T (1)

<Graph theory-based complexity>

$$C_T = C_\eta + C_E$$

$$C_\eta = 2\eta \log_2 \eta - \sum_i \eta_i \log_2 \eta_i$$

$$C_E = E \log_2 E - \sum_i E_i \log_2 E_i$$

 η : the total number of "connectivity" = the number of propane substructure

$$\eta = \frac{1}{2} \sum_i (4-i)(3-i) - \underbrace{D}_i - \underbrace{3T}_{\substack{\text{Double Triple}\\\text{bond bond}}}$$

 η_i : each number of "same" substructure E: the total number of non-hydrogen atom E_i : each number of "same" non-hydrogen atom

<Examples>

1. Bertz, S. H. J. Am. Chem. Soc. 1981, 103, 3599.

2. Hendrickson, J. B.; Huang, P.; Toczko, A. G. J. Chem. Inf. Comput. Sci. 1987, 27, 63.

Bertz Complexity C_T(2)

PubChem Batrachotoxin (Compound)

Property Name	Property Value
Molecular Weight	538.7 g/mol
XLogP3-AA	1.6
Hydrogen Bond Donor Count	3
Hydrogen Bond Acceptor Count	7
Rotatable Bond Count	4
Exact Mass	538.30428706 g/mol
Monoisotopic Mass	538.30428706 g/mol
Topological Polar Surface Area	104 Å ²
Heavy Atom Count	39
Formal Charge	0
Complexity	1140

1. Bertz, S. H. J. Am. Chem. Soc. 1981, 103, 3599.

2. Hendrickson, J. B.; Huang, P.; Toczko, A. G.. J. Chem. Inf. Comput. Sci. 1987, 27, 63.

3. https://pubchem.ncbi.nlm.nih.gov/

Von Korff Complexity

von Korff, M.; Sander, T. Scientific Reports 2019, 9, 967.

Proudfoot's Complexity (1)

Proudfoot's approach: Hydrogen including path-based complexity for each atom

Atom		Conne	ctivity	non-hyd	rogen Connectivity	
#1	Н	X1	1 any type	D1	1 non-H	
#6	С	X2	2 any type	D2	2 non-H	
#7	Ν	X3	3 any type	D3	3 non-H	
#8	0	X4	4 any type	D4	4 non-H	
#9	F	X5	5 any type	D5	5 non-H	
#14	Si	X6	6 any type	D6	6 non-H	
#15	Р					
#16	S	For ea	ach Atom		For one molecu	ıle
#17	CI	a	$\sum_{i=1}^{n}$		C = N	\overline{C}
#35	Br	C_A =	$C_A = -\sum p_i \log_2 p_i + \log_2 N \qquad C_M = \sum C_A$			
#53	I		i			

 \rightarrow Complexity = the expected value of passing through a certain path

- $p_{m{i}}\,$: the fractional occurrence of each path type
- $N\,$: the total number of paths

Paths: length 2 (in case of terminal elements, length 1)

2. Proudfoot, J. R. Bioorg. Med. Chem. Lett. 2017, 82, 6968.

^{1.} Proudfoot, J. R. J. Org. Chem. 2017, 82, 6968.

Proudfoot Complexity (2)

Paths:

[#06&X3&D3]~[#06&X3&D2]~[#01&X1&D1] [#06&X3&D3]~[#06&X3&D2]~[#01&X1&D1] [#06&X3&D3]~[#06&X3&D2]~[#06&X3&D2] [#06&X3&D3]~[#06&X3&D2]~[#06&X3&D2] [#06&X3&D3]~[#06&X3&D3]~[#06&X4&D1] [#06&X3&D3]~[#06&X3&D3]~[#08&X1&D1]

$$C_A = -\left\{\frac{2}{6}\log_2\left(\frac{2}{6}\right) + \frac{2}{6}\log_2\left(\frac{2}{6}\right) + \frac{1}{6}\log_2\left(\frac{2}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right)\right\} + \log_2 6$$
$$= -(-0.53 - 0.53 - 0.43 - 0.43) + 2.58$$
$$= 4.5$$

Min = 0, Max = 7.168

1. Proudfoot, J. R. J. Org. Chem. 2017, 82, 6968.

2. Proudfoot, J. R. Bioorg. Med. Chem. Lett. 2017, 82, 6968.

Proudfoot's Complexity (3)

Synthesis	Year	Ring step	Total steps
Magnus, (\pm)	1992	13	28
Overman, (−)	1993	18	24
Fukuyama, (−)	2004	20	25

	∽ _N	/
\	لر	
		83
`N´ │		

Synthesis	Year	Ring step	Total steps
Bodwell, (\pm)	2002	5	12
Padwa, (±)	2007	4	16
Reissig, (±)	2010	2	9
Vanderwal, (\pm)	2011	3	6

Due to the path analysis, this score enables to analyze the retrosynthesis based on the complexity of each atom.

1. Proudfoot, J. R. J. Org. Chem. **2017**, 82, 6968.

2. 110625_LS_Kengo_Masuda. 3. 130727_PS_Toshiki_Tabuchi.

Böttcher Score C_m

One variable is needed to identify the nature of the element by its valence shell, and four variables are required as descriptors of the bonding environment: the number of bonds, the number of chemically different bonds, the element diversity, and the stereochemistry.

$$C_m = \sum_i d_i e_i s_i \log_2(V_i b_i) - \frac{1}{2} \sum_j d_j e_j s_j \log_2(V_j b_j)$$

 d_i : the number of chemically nonequivalent bonds e_i : the number of different non-hydrogen elements in the bond situation

 s_i : stereocenters = 2, others = 1 V_i : valence electrons b_i : total number of bonds

j :the corresponding atom positions of chemically equivalent sets of atoms

1. Böttcher, T. J. Chem. Inf. Model. 2016, 56, 462. 2. 201121_LS_Masanori_Nagatomo

Waldmann SPS (1)

- SPS: Aiming to consider the biologically relevant characteristics of compounds
 - \rightarrow The sp³ richness and the ring system are mainly focused on the factors.

$$SPS = \sum_{i} h_{i} s_{i} r_{i} n_{i}^{2}$$
$$nSPS = \frac{1}{a} \sum_{i} h_{i} s_{i} r_{i} n_{i}^{2}$$

- $h_i\,$: equals 3,2, and 1 for sp³-, sp²- and sphybridized atoms
- S_i : stereocenters = 2, others = 1
- r_i : non-aromatic ring = 2, others = 1
- n_i : the number of non-hydrogen neighbors
 - : the number of non-hydrogen atoms

SPS (2)

nSPS gave the good potency/promiscuity, while Böttcher score had almost no correlation.

Short Summary

① unsaturation

③ ring, ④ symmetry

	$1 \xrightarrow{2} 1 \xrightarrow{1} 2$	
Bertz	2.0 << 19.2	8.0
Böttcher	8.0 < 15.2	6.0
SPS	30 << 159	72
CM (Proudfoot)	17.9 < 20.6	18.0
CA (Proudfoot)	C1: 4.04 C1: 5.50 C2: 4.91 C2: 5.57	C1: 4.50

2 oxidation/stereochemistry

Bertz	0.0 <<	10.8 <<	26.3
Böttcher	5.0 <<	21.5 <	25.2
SPS	18 <<	60 >	24
CM (Proudfoot)	11.9 <	15.6 >	11.8
CA (Proudfoot)	C1: 4.04 = C2: 3.81 <	C1: 4.04 > C2: 4.06 >	C1: 3.69 C2: 3.40

Cyclobutane: highly symmetric ring \rightarrow All scores are decreased.

	Gain	Loss
Bertz	12	4
Böttcher	2	(4)
SPS	23	(1)
CM (Proudfoot)	2	1

Contents

1. Development of indexes

The Journal of Organic Chemistry

Molecular Complexity and Retrosynthesis

John R. Proudfoot*®

2. Application closed to the public