Utilizing Transition Metal Catalysts in Living Cells

2024.04.27. Literature Seminar M2 Takahiro Migita

Contents

Introduction ~transition metal applied in living cells

2. Main Article

pubs.acs.org/JACS

Article

A Transfer Hydrogenation Approach to Activity-Based Sensing of Formate in Living Cells

Steven W. M. Crossley,[#] Logan Tenney,[#] Vanha N. Pham, Xiao Xie, Michelle W. Zhao, and Christopher J. Chang*

Eukaryotic Cellular Environment

- Small neutral compounds can diffuse through the cell membrane.
- an aqueous aerobic environment (pH 7.0, 37 °C)
- high salt concentrations and high quantities of thiols

Transition Metal Drugs

NAMI-A anti-cancer, phase 2 auranofin antirheumatic drug

OAc

carboplatin

anti-cancer

Ω

Au¹ - - - PEt₃

"OAc

While highly active, all react only one time with their targets.

Soldevila-Barreda, J. J.; Metzler-Nolte, N. Chem. Rev. 2019, 119, 829-869.

Transition Metal Catalysts in Cells

Merits

• increasing the reaction and substrate scopes to obtain non-natural reactivity

• tunable metal center and ligands to achieve the desired reactivity

application: drug candidates (shown later), biomarker evaluation (this article)

1) James, C. C.; de Bruin, B.; Reek, J. N. Angew. Chem., Int. Ed. 2023, 62, e202306645. 2) Do, L. H. et. al. ACS catalysis, 2021, 11, 5148-5165.5

Oxygen-Independent Cytotoxic Photocatalyst

in cancer cell (hypoxic environment);

Cytotoxicity is expressed by the shortage in cytochrome c (ox.) and NADH.

Pt-Utilized Cancer-Specific Prodrug

Huang, Z. et. al. J. Med. Chem. 2020, 63, 13899-13912.

Contents

1. Introduction

~transition metal applied in living cells

2. Main Article

pubs.acs.org/JACS

Article

A Transfer Hydrogenation Approach to Activity-Based Sensing of Formate in Living Cells

Steven W. M. Crossley,[#] Logan Tenney,[#] Vanha N. Pham, Xiao Xie, Michelle W. Zhao, and Christopher J. Chang*

Prof. Christopher J. Chang

Career

1997 :M.S. @ California Institute of Technology (Prof. Harry B. Gray)
2002 :Ph.D. @ MIT (Prof. Daniel G. Nocera)
2002- :Postdoc. @ MIT (Prof. Stephen J. Lippard)
2004- :Assistant professor @ University of California, Berkeley
2009- :Associate Professor @ University of California, Berkeley
2012- :Full Professor @ University of California, Berkeley

Research Field

- **1. Transition Metal Signaling and Metalloallostery**
- 2. Activity-Based Sensing
- **3. Activity-Based Proteomics**
- 4. Artificial Photosynthesis

Transition Metal Signaling

Bioinorganic chemistry beyond active sites.

Artificial Photosynthesis

Catalyzing sustainable electrosynthesis.

Activity-Based Sensing

Controlling reactivity of each moiety is a central issue in ABS strategy.

1) Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. *J. Am. Chem. Soc.* **2024**, *146*, 8865-8876. 2) Bruemmer, K. J.; Crossley, S. W. M.; Chang, C. J. *Angew. Chem., Int. Ed. Engl.* **2020**, *59*, 13734–13762.

Target is Formate

*THF means a kind of folate (葉酸) here.

Formate plays an important role in one-carbon metabolism, which controls homeostasis. Formate is a potential biomarker in diagnosis in cancer and other serious disease.

However, current analysis methods are limited (LC-MS, NMR etc.).

1) Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. *J. Am. Chem. Soc.* **2024**, *146*, 8865-8876. 2) Ducker, G. S.; Rabinowitz, J. D. *Cell Metab.* **2017**, *25*, 27–42.

Formate as Hydride Donor

Known Aldehyde-to-Alcohol Turn-on Fluorophores

1) Chang, C. J. et. al. *J. Am. Chem. Soc.* **2024**, *146*, 8865-8876. 2) Tanaka, F. et. al. *J. Org. Chem.* **2009**, *74*, 2417–2424. 3) Do, L. H. et. al. *J. Am. Chem. Soc.* **2017**, 139, 8792–8795.

Fluorescein-like Scaffolds

1) Chang, C. J. et. al. *J. Am. Chem. Soc.* **2024**, *146*, 8865-8876. 2) Nagano, T. *Proc. Jpn. Acad. Ser. B, Phys.* **2010**, *86*, 837–847. 3) Nagano, T. et. al. *J. Am. Chem. Soc.* **2005**, *127*, 4888–4894.

dPeT Strategy

1) Chang, C. J. et. al. *J. Am. Chem. Soc.* **2024**, *146*, 8865-8876. 2) Nagano, T. *Proc. Jpn. Acad. Ser. B, Phys.* **2010**, *86*, 837–847. 3) Nagano, T. et. al. *J. Am. Chem. Soc.* **2005**, *127*, 4888–4894.

Calculating LUMO of Benzene Moiety and Quantum Yield

large gap in LUMO energy between aldehyde-form and alcohol-form

computed using the *Spartan '18* program from *Wavefunction, Inc* submitted to an 'Equilibrium Geometry' calculation at 'Ground' state in 'Water' with 'Density Functional B3LYP method and a '6-311G*' basis set *post*-geometry minimization a methyl group used as a surrogate for the fluoresceine moiety A-G : references (experimental data)

F-1

Predicted Effect of Hydration

Synthesis of the Designed Fluorophore

Emission Properties of F-1 and F-9

F-1

Hydrogen transfer catalysts were investigated next.

Metal Center

Chang, C. J. et. al. *J. Am. Chem. Soc.* 2024, *146*, 8865-8876. 2) Sadler, P. J. et. al. *Dalton Transactions*, 2018, *47*, 7178-7189.
 Sadler, P. J. et. al. *Nat. Chem.* 2018, *10*, 347–354. 4) Do, L. H. et. al. *J. Am. Chem. Soc.* 2017, *139*, 8792–8795.
 Rauchfuss, T. B. et. al. *Eur. J. Inorg. Chem.* 2009, *33*, 4927–4930. 6) Xiao, J. et. al. *Angew. Chem., Int. Ed.* 2006, *45*, 6718–6722.

1) Chang, C. J. et. al. J. Am. Chem. Soc. 2024, 146, 8865-8876. 2) Page, M. I. et. al. Catal. Sci. Technol. 2020, 10, 590-612.

Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. J. Am. Chem. Soc. 2024, 146, 8865-8876.

Rationale for Selectivity Observed on Complex 9

• formate; 4-membered ring transition state (unfavored)

• NADH; 6-membered ring transition state (favored)→faster

Rationale for Selectivity Observed on Complex 19

Comparing Kinetics of Catalysts

complex 9 showed 2.7-fold faster reduction rate than complex 19.

Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. J. Am. Chem. Soc. 2024, 146, 8865-8876.

Thiols Inhibited the Reaction

Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. J. Am. Chem. Soc. 2024, 146, 8865-8876.

HO

Failure in Turn-On Response and Redesigning Ratio-metric Response Fluorophore

Ratio-metric Response Fluorophore : using intensity ratio, not intensity itself

Two or more wavelengths of an excitation or emission spectrum are measured.

ex)

 λ_{em} is fixed. A form: λ_{ex} = 420 nm, B form: λ_{ex} = 470 nm

A/B ratio is analyzed by intensity ratio.

Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. J. Am. Chem. Soc. 2024, 146, 8865-8876.

Profile of Ratio-metric Fluorophore

Crossley, S. W.; Tenney, L.; Pham, V. N.; Xie, X.; Zhao, M. W.; Chang, C. J. J. Am. Chem. Soc. 2024, 146, 8865-8876.

Emission Intensity (AU)

Applied in Cellular Environment

The probe successfully express the one-carbon metabolism in the living cells.

serine is one-carbon donor. The more serine in the cells, the more formate in the cells. three enzymes controlling one-carbon metabolism are knocked out. the fluorescence responded the deficient of formate.

Summary

Cellular environment

- an aqueous aerobic environment (pH 7.0, 37 °C)
- high quantities of nucleophiles and thiols

transition metal enables...

- 1. azide-alkyne cycloaddition
- 2. amide coupling
- 3. azide reduction
- 4. cross-coupling

- 5. olefin metathesis
- 6. protecting group cleavage
- 7. ring formation

8. hydrogen transfer

Transition metal enables us to visualize one-carbon metabolism!

Appendix

SAR of Ir Catalyst; Activity

Electron donating groups enhance activity.

SAR of Ir Catalyst; Stability

Electron donating groups enhance stability.

SAR of Ir Catalyst; Kinetics

Electron donating groups dramatically accelerate hydride transfer.

Fluorophore with Longer Retention Time in Cell

more anionic in cell

Masking anionic groups with ester to obtain membrane permeability In cells, ester groups will be removed by esterase.

ex) acetoxymethyl group (more stable than acetoxy group)

Comparing Selectivity of Catalysts with Additive

Other Calculated Candidates

Avoiding Aldehyde on *p***-Position**

there is an example that cellular enzyme oxidized *p*-aldehyde.

Pt-Utilized Cancer-specific Prodrug

