
Problem Session (5) 2024.4.20. Kyohei Takaoka

Please provide the reaction mechanisms.
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1. Oxone (8 eq), NaHCO3 (24.8 eq), H2O/MeCN (10/1, 0.05 M), rt, 65%
2. p-TsOH (12 mol%), CHCl3, −20 °C;
triton B (24 mol%), rt, 49%

3. NaBH4 (0.75 eq), EtOH, rt, 96%
4. TBSOTf (1.5 eq), 2,6-lutidine (2.0 eq), CH2Cl2, rt, 95%
5. PCC (15.6 eq), NaOAc (22.8 eq), CH2Cl2, rt, 68%
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1. TiCl4 (10 eq), Zn/Cu (40 eq)*, dimethoxyethane, 65 °C, 53%
2. O2 (1 atm), methylene blue (2 mol%), CH2Cl2, −40 °C, hv**;
DBU (5 eq), −40 to −20 °C, 56%

3. Dess-Martin periodinane (1.3 eq), CH2Cl2, rt, 95%
4. O2 (1 atm), Mn(dpm)3 (20 mol%)

t-BuOOH (1.5 eq), PhSiH3 (2.5 eq, added over 12 h)
i-PrOH/CH2Cl2 (6.5/1), −10 °C; PPh3 (2.1 eq), 52%

5. FeCl2 (80 mol%), H2O (13 eq), MeCN, rt, 42%
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* TiCl4 and Zn/Cu were pre-mixed under
heat reflux temperature for 5 hours.

** 500 W halogene lamp
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Problem Session (5) Answer 2024.4.20 Kyohei Takaoka
Topic: The reaction with O2 in total synthesis

Two reaction mode of oxygen molecule:

triplet (3O2): ground state, biradical singlet (1O2): +22.5 kcal/mol , soft electrophile
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Photosensitization is a common way of 1O2 generation.
Intersystem crossing (ISC) from 3O2* to

1O2 is difficult
because of their energetic difference.
By using sensitizer (such as rose bengal, methylene
blue, tetraphenylporphyrin), 1O2 can be generated from
3O2 via sensitization.

ISC

Unique feature of oxygen molecule:
Usually, product contains O-O bond, which can be used as an oxidant. → O2 can activate more than 1 position.
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Problem 1: Total synthesis of cardamom peroxide by Maimone (2014)

O O

O OHO

cardamom peroxide

O
O

O
O

O O

O O

activate 5 carbons with 3 oxygen molecules.

Problem 2: Total synthesis of cephalosporolide G by Carreño (2009)
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activate 3 carbons with single oxygen molecule.
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cephalosporolide G

singlet→triplet transition
is spin forbidden
half-lives of 1O2 depends on solvent

1,2)

Introduction:

For the reaction of 1O2, see also
100703_LS_Tamaki_Hoshikawa
140620_PS_Komei_Sakata
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700 μs in CCl4
50 μs in MeCN
2 μs in H2O
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Answer:

1-1
((-)-myrtenal)

1. TiCl4 (10 eq), Zn/Cu (40 eq), dimethoxyethane, 65 °C, 53%
2. O2 (1 atm), methylene blue (2 mol%), CH2Cl2, −40 °C, hv**;
DBU (5 eq), −40 to −20 °C, 56%

3. Dess-Martin periodinane (1.3 eq), CH2Cl2, rt, 95%
4. O2 (1 atm), Mn(dpm)3 (20 mol%)

t-BuOOH (1.5 eq), PhSiH3 (2.5 eq, added over 12 h)
i-PrOH/CH2Cl2 (6.5/1), −10 °C; PPh3 (2.1 eq), 52%

5. FeCl2 (80 mol%), H2O (13 eq), MeCN, rt, 42%

Hu, X.; Maimone, T. J. J. Am. Chem. Soc. 2014, 136, 5287.

TiCl4 + Zn/Cu

reflux, 5 h
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discussion 2

1O2 [4+2]
cycloaddition

MnIII(dpm)3

Tin

TiII

n = 1 (reduced by Zn/Cu) or 3

H MnIII(dpm)2

PhSiH3

Hdpm
MnIII(dpm)2(OR)

with two EWG
→ more reactive

with one EWG
→ less reactive

from opposite
side of dimethyl

discussion 1

from less hindered
position

PhSiH2(OR)

ROH

R = i-Pr or t-BuO*

* t-BuOOH facilitate the initiation period in the reaction.3)

+ MnII(dpm)2

bis-allylic proton

* TiCl4 and Zn/Cu were pre-mixed under heat
reflux temperature for 5 hours.

** 500 W halogene lamp

TiII



H

3

O
O

O
O

O O

O O

O O

O OO
O

1-11 1-12

1-13

O O

O OO

1-16

O O

O ORO

1-17 (R = SiH2Ph)
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* Slow addiiton of PhSiH3 suppressed premature reduction of peroxy radical 1-13.
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ref 4)

see also:
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step 5
* 1-23 converts to 1-26 and 1-2 upon standing in solution (CDCl3).

Discussion 1: Mcmurry coupling
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There would be two plausible mechanism, path A and B.

path A
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The first dimerization proceeds from less hindered face.
OTin avoid large dimethyl-cyclobutane ring, and generates 1-31-a.
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reduction by
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path B

From both pathway, 1-5 would be generated. For path B to proceed, TinO
group of 1-31-a must be located on the same face, thus stereoselectivity
was ensured.
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Discussion 2: 1O2 [4+2] cycloaddition

1-5 step 1

1O2

O O

[4+2] cycloaddition of 1O2 is proposed to proceed with diradical pathway
8,9) (except for benzene with 1O2).

the largest orbital coefficient of HOMO

O
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air oxidation
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O

1-35

Author mentioned that 1-9 was also obtained in 12% yield in step 2. Radical 1-35 is stabilized by captodative effect,
thus BDE of highlighted C-H would be lowered. It might be the cause of auto oxidation.
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2
1. Oxone (8 eq), NaHCO3 (24.8 eq), H2O/MeCN (10/1, 0.05 M), rt, 65%
2. p-TsOH (12 mol%), CHCl3, −20 °C;
triton B (24 mol%), rt, 49%

3. NaBH4 (0.75 eq), EtOH, rt, 96%
4. TBSOTf (1.5 eq), 2,6-lutidine (2.0 eq), CH2Cl2, rt, 95%
5. PCC (15.6 eq), NaOAc (22.8 eq), CH2Cl2, rt, 68%
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Barradas, S.; Urbano, A.; Carreño, M. C. Chem. Eur. J. 2009, 15, 9286.
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Discussion 3: Generation of singlet oxygen from peroxide

O2 can be generated by decomposition of hydrogen peroxide or organic peroxides, and it is described that the
generated oxygen molecule is 1O2, not ground state

3O2.
5)
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Path A: nucleophilic attack on O atom

Path B: nucleophilic attack on S atom

In case of Oxone: Chemical trap6)

2-15 was used as a trap for 1O2, and Oxone under basic conditions gave endoperoxide 2-16.

1. Detection of 1O2

2. Plausible mechanism of decomposition of HSO5
-

Path A or path B seems plausible in the reaction.
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Discussion 4: Stereoselective conjugate addition
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O18 labeling experiment was conducted. In the experiment, authors mixed O18 labeled peroxy acid and normal
peroxy acid, then measured the molecule weight of O2. If path A proceeds, scrambled O2

34 would be observed.
From the ratio of generating O2

36, we can judge which pathway is more favorable. Authors measured 4 peroxy
acids described above. The result showed that path A was more favorable in case of Oxone.
For other peroxy acids, the tendency of the reaction pathway depends on leaving ability of RO- and bulkiness of
carbonyl group.
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(attack on O)

17%

90%

74%

76%

path B
(attack on S or C)

83%

10%

26%

24%

Construction of trans-6/6 ring seems hard in this substrate due to steric repulsion between OOH and side chain.
Incomparison with 2-6-b and 2-6-c, 2-6-b is more stable because methyl group locates on equatorial position. The
reaction is reversible, thus more stable 2-6-b was obtained as a major product.

2.2. O18 labeling experiment6)
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O2
36

mixing

(O* = O18)

result:

O18 labeled

Note: Experimental results show that the rate of Oxone loss follows a second-order reaction of Oxone
concentration and the decomposition speed can be expressed as v = k [OSO4H

-][OSO4
2-].

The rate constant in aqueous solution at pH=pKa ([OSO4H-]=[OSO42-]) was measured:
k = 4.7*10-2 [L/mol/s] at 25 °C6).
In this problem, the initial concentration of Oxone was about 0.45 M, so assuming that the solution was at pH =
pKa = 9.2, the half-life t1/2 of Oxone is
t1/2 = 1/k/[OSO42-] = 1/(47*10^-3*0.45/2) = 94 [s].
The actual half-life should be longer than this time because the actual pH is not likely to be 9.2, but the rate of
singlet oxygen generation is considered fast enough.
Therefore, this reaction should be reacted from singlet oxygen rather than from Oxone.
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