Please provide the reaction mechanisms.

1. $\mathrm{TiCl}_{4}(10 \mathrm{eq}), \mathrm{Zn} / \mathrm{Cu}(40 \mathrm{eq})^{*}$, dimethoxyethane, $65^{\circ} \mathrm{C}, 53 \%$
2. O_{2} (1 atm), methylene blue ($2 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$, $h v^{* *}$; DBU (5 eq), -40 to $-20^{\circ} \mathrm{C}, 56 \%$
3. Dess-Martin periodinane (1.3 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%
4. O_{2} (1 atm) $\mathrm{Mn}(\mathrm{dpm})_{3}(20 \mathrm{~mol} \%)$ t - BuOOH (1.5 eq), $\mathrm{PhSiH}_{3}(2.5 \mathrm{eq}$, added over 12 h) $i-\mathrm{PrOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 / 1),-10{ }^{\circ} \mathrm{C} ; \mathrm{PPh}_{3}$ (2.1 eq), 52%

5. FeCl_{2} ($80 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (13 eq), $\mathrm{MeCN}, \mathrm{rt}, 42 \%$

1-1
((-)-myrtenal)
${ }^{*} \mathrm{TiCl}_{4}$ and $\mathrm{Zn} / \mathrm{Cu}$ were pre-mixed under
heat reflux temperature for 5 hours.
${ }^{* *} 500 \mathrm{~W}$ halogene lamp 1-2

2

1. Oxone (8 eq), $\mathrm{NaHCO}_{3}(24.8 \mathrm{eq}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}(10 / 1,0.05 \mathrm{M}), \mathrm{rt}, 65 \%$
2. $p-\mathrm{TsOH}(12 \mathrm{~mol} \%), \mathrm{CHCl}_{3},-20^{\circ} \mathrm{C}$;
triton B ($24 \mathrm{~mol} \%$), rt, 49\%
3. $\mathrm{NaBH}_{4}(0.75 \mathrm{eq})$, EtOH, rt, 96%
4. TBSOTf (1.5 eq), 2,6-lutidine (2.0 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%

5. PCC (15.6 eq), $\mathrm{NaOAc}(22.8 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 68%

Oxone: $2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}$
2-1

2-2

$p-\mathrm{TsOH}$

triton B

2,6-lutidine

PCC

Topic: The reaction with O_{2} in total synthesis
Introduction:
Two reaction mode of oxygen molecule:
triplet $\left({ }^{3} \mathrm{O}_{2}\right)$: ground state, biradical

singlet \rightarrow triplet transition is spin forbidden half-lives of ${ }^{1} \mathrm{O}_{2}$ depends on solvent ${ }^{1,2)} \sigma_{\mathrm{s}}$ $700 \mu \mathrm{~s}$ in CCl_{4} $50 \mu \mathrm{~s}$ in MeCN $2 \mu \mathrm{~s}$ in $\mathrm{H}_{2} \mathrm{O}$

Unique feature of oxygen molecule:
Usually, product contains $\mathrm{O}-\mathrm{O}$ bond, which can be used as an oxidant. $\rightarrow \mathrm{O}_{2}$ can activate more than 1 position.

Problem 1: Total synthesis of cardamom peroxide by Maimone (2014)

0-1
0-2
Photosensitization is a common way of ${ }^{1} \mathrm{O}_{2}$ generation. Intersystem crossing (ISC) from ${ }^{3} \mathrm{O}_{2}{ }^{*}$ to ${ }^{1} \mathrm{O}_{2}$ is difficult because of their energetic difference.
By using sensitizer (such as rose bengal, methylene blue, tetraphenylporphyrin), ${ }^{1} \mathrm{O}_{2}$ can be generated from ${ }^{3} \mathrm{O}_{2}$ via sensitization.

For the reaction of ${ }^{1} \mathrm{O}_{2}$, see also 100703_LS_Tamaki_Hoshikawa 140620_PS_Komei_Sakata

1. TiCl_{4} (10 eq), $\mathrm{Zn} / \mathrm{Cu}\left(40 \mathrm{eq}\right.$), dimethoxyethane, $65^{\circ} \mathrm{C}, 53 \%$
2. $\mathrm{O}_{2}(1 \mathrm{~atm})$, methylene blue ($2 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$, $h v^{* *}$;

DBU (5 eq), -40 to $-20^{\circ} \mathrm{C}, 56 \%$
3. Dess-Martin periodinane (1.3 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%
4. O_{2} (1 atm), $\mathrm{Mn}(\mathrm{dpm})_{3}(20 \mathrm{~mol} \%)$

1-1
((-)-myrtenal) t - BuOOH (1.5 eq), $\mathrm{PhSiH}_{3}(2.5 \mathrm{eq}$, added over 12 h) $i-\mathrm{PrOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 / 1),-10^{\circ} \mathrm{C}$; PPh_{3} (2.1 eq), 52%
5. FeCl_{2} ($80 \mathrm{~mol} \%$), $\mathrm{H}_{2} \mathrm{O}$ (13 eq), $\mathrm{MeCN}, \mathrm{rt}, 42 \%$

* TiCl_{4} and $\mathrm{Zn} / \mathrm{Cu}$ were pre-mixed under heat reflux temperature for 5 hours.
** 500 W halogene lamp

1-2

Hu, X.; Maimone, T. J. J. Am. Chem. Soc. 2014, 136, 5287.

* Slow addiiton of PhSiH_{3} suppressed premature reduction of peroxy radical 1-13.

* 1-23 converts to 1-26 and 1-2 upon standing in solution $\left(\mathrm{CDCl}_{3}\right)$.

Discussion 1: Mcmurry coupling
There would be two plausible mechanism, path A and B.

The first dimerization proceeds from less hindered face.
OTin avoid large dimethyl-cyclobutane ring, and generates 1-31-a.
From both pathway, 1-5 would be generated. For path B to proceed, $\mathrm{Ti}^{\mathrm{n}} \mathrm{O}$ group of 1-31-a must be located on the same face, thus stereoselectivity was ensured.

III

1-5

Discussion 2: ${ }^{1} \mathrm{O}_{2}[4+2]$ cycloaddition
[4+2] cycloaddition of ${ }^{1} \mathrm{O}_{2}$ is proposed to proceed with diradical pathway ${ }^{8,9}$ (except for benzene with ${ }^{1} \mathrm{O}_{2}$).

Author mentioned that 1-9 was also obtained in 12% yield in step 2. Radical 1-35 is stabilized by captodative effect, thus BDE of highlighted $\mathrm{C}-\mathrm{H}$ would be lowered. It might be the cause of auto oxidation.

1. Oxone (8 eq), NaHCO_{3} (24.8 eq), $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}(10 / 1,0.05 \mathrm{M}$), rt, 65%
2. $p-\mathrm{TsOH}(12 \mathrm{~mol} \%), \mathrm{CHCl}_{3},-20^{\circ} \mathrm{C}$;
triton B ($24 \mathrm{~mol} \%$), rt, 49\%
3. $\mathrm{NaBH}_{4}(0.75 \mathrm{eq}), \mathrm{EtOH}, \mathrm{rt}, 96 \%$
4. $\operatorname{TBSOTf}(1.5 \mathrm{eq})$, 2,6 -lutidine (2.0 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%

5. PCC (15.6 eq), $\mathrm{NaOAc}\left(22.8 \mathrm{eq}\right.$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 68 \%$

Oxone: $2 \mathrm{KHSO}_{5} \cdot \mathrm{KHSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4}$
2-1

2-2

Barradas, S.; Urbano, A.; Carreño, M. C. Chem. Eur. J. 2009, 15, 9286.

Answer:

Discussion 3: Generation of singlet oxygen from peroxide

1. Detection of ${ }^{1} \mathrm{O}_{2}$

O_{2} can be generated by decomposition of hydrogen peroxide or organic peroxides, and it is described that the generated oxygen molecule is ${ }^{1} \mathrm{O}_{2}$, not ground state ${ }^{3} \mathrm{O}_{2} .{ }^{5}$)
In case of Oxone: Chemical trap ${ }^{6}$)

detected in both conditions
2-15 was used as a trap for ${ }^{1} \mathrm{O}_{2}$, and Oxone under basic conditions gave endoperoxide 2-16.
2. Plausible mechanism of decomposition of $\mathrm{HSO}_{5}{ }^{-}$

Path A or path B seems plausible in the reaction.
Path A: nucleophilic attack on O atom

Path B: nucleophilic attack on S atom

2.2. O^{18} labeling experiment ${ }^{6)}$

O^{18} labeled

$$
\begin{array}{llc}
\mathrm{O}_{2}^{34} & \mathrm{O}_{2}^{32} & \mathrm{O}_{2}^{36} \\
\mathrm{O}=\mathrm{O}^{*} & \mathrm{O}=\mathrm{O} & \mathrm{O}^{*}=\mathrm{O}^{*}
\end{array}
$$

scrambled

$$
\left(O^{*}=O^{18}\right)
$$

result:

| peroxy acid | path A
 (attack on O) | path B
 (attack on S or C) |
| :---: | :---: | :---: | (attack on O) (attack on S or C)

AcOOH	17\%	83\%
	90\%	10\%

74%

26\%
10\% 24\%
O^{18} labeling experiment was conducted. In the experiment, authors mixed O^{18} labeled peroxy acid and normal peroxy acid, then measured the molecule weight of O_{2}. If path A proceeds, scrambled $\mathrm{O}_{2}{ }^{34}$ would be observed. From the ratio of generating $\mathrm{O}_{2}{ }^{36}$, we can judge which pathway is more favorable. Authors measured 4 peroxy acids described above. The result showed that path A was more favorable in case of Oxone.
For other peroxy acids, the tendency of the reaction pathway depends on leaving ability of RO^{-}and bulkiness of carbonyl group.

Note: Experimental results show that the rate of Oxone loss follows a second-order reaction of Oxone concentration and the decomposition speed can be expressed as $\mathbf{v}=\mathbf{k}\left[\mathrm{OSO}_{4} \mathrm{H}^{-}\right]\left[\mathrm{OSO}_{4}{ }^{2-}\right]$.
The rate constant in aqueous solution at $\mathrm{pH}=\mathrm{pKa}$ ([OSO4H-]=[OSO42-]) was measured:
$\mathrm{k}=4.7^{*} 10^{-2}[\mathrm{~L} / \mathrm{mol} / \mathrm{s}]$ at $25^{\circ} \mathrm{C}^{6}$.
In this problem, the initial concentration of Oxone was about 0.45 M , so assuming that the solution was at $\mathrm{pH}=$ $\mathrm{pKa}=9.2$, the half-life $\mathrm{t}_{1 / 2}$ of Oxone is
$t_{1 / 2}=1 / \mathrm{k} /[O S O 42-]=1 /\left(47^{*} 10^{\wedge}-3^{*} 0.45 / 2\right)=94$ [s$]$.
The actual half-life should be longer than this time because the actual pH is not likely to be 9.2 , but the rate of singlet oxygen generation is considered fast enough.
Therefore, this reaction should be reacted from singlet oxygen rather than from Oxone.

Discussion 4: Stereoselective conjugate addition
4 diastereomers could be generated in conjugate addition.

Construction of trans- $6 / 6$ ring seems hard in this substrate due to steric repulsion between OOH and side chain. Incomparison with 2-6-b and 2-6-c, 2-6-b is more stable because methyl group locates on equatorial position. The reaction is reversible, thus more stable 2-6-b was obtained as a major product.

Reference:

1) Ogilby, P. R.; Foote, C. S. J. Am. Chem. Soc. 1983, 105, 3423.
2) Hurst, J. R.; McDonald, J. D.; Schustre, G. B. J. Am. Chem. Soc. 1982, 104, 2065.
3) Tokuyasu, T.; Kunikawa, S.; Masuyama, A.; Nojima, M. Org. Lett. 2002, 4, 3595.
4) Harris, J. R.; Haynes, M. T.; Thomas, A. M.; Woerpel, K. A. J. Org. Chem. 2010, 75, 5083.
5) Adam, W.; Kazakov, D. V.; Kazakov, V. P. Chem. Rev. 2005, 3371.
6) Koubek, E.; Welsch, J. E. J. Org. Chem. 1968, 33, 445.
7) Barradas, S.; Carreño, M. C.; Lòpez, M. G.; Latorre, A.; Urbano, A. Org. Lett. 2007, 9, 5019.
8) Organic Chemistry: Theory, Reactivity and Mechanisms in Modern Synthesis
9) Leach, A. G.; Houk, K. N. Chem. Commun. 2002, 1243.

