Cyclopropenium Ions in Catalysis

2024.4.13 Literature Seminar M2 Shuji Toyama

Contents

- 1. Introduction
- 2. Application of Cyclopropenium lons in Catalysis
- 2-1. Reactivity (Tristan H. Lambert group)

2-2. Noncovalent Interaction (Ying-Yeung Yeung group)

3. Summary

Characteristic of Cyclopropenium Ions

Aromaticity of cyclopropenium ion

 2π electrons

Cyclopropenium ion satisfies Hükel's rules of aromaticity. $(4n + 2)\pi$, n = 0, 1, 2, ...

1) Wiberg, K. B. Angew. Chem. Int. Ed. Engl. 1986, 25, 312.

Discovery of Cyclopropenium Ions

The first synthesis of cyclopropenium ion was achieved by Breslow (1957).
BE etherate

Cyclopropenone was also synthesized by Breslow (1959).

1) Breslow, R. J. Am. Chem. Soc. **1957**, 79, 5318.

2) Breslow, R.; Haynie, R.; Mirra J. J. Am. Chem. Soc. 1959, 81, 247.

Introduction of Authors

Prof. Tristan H. Lambert

1998 B.S., @ The University of Wisconsin
2004 Ph.D., @ California Institute of Technology (Prof. MacMillan, D.)
2004- Postdoctoral fellow @ Memorial Sloan-Kettering Cancer Center (Prof. Danishefsky, S.)
2006- Postdoctoral fellow @ Columbia University
2011- Associate Professor @ Columbia University
2016- Professor @ Columbia University
2018- Professor @ Cornell University

Research topic: Intriguing chemical building blocks such as aromatic ions and their application to problems in the areas of catalysis, reaction design, and polymers

Prof. Ying-Yeung Yeung

2001 B.S., @ The Chinese University of Hong Kong (Prof. Chow, H.-F.) 2005 Ph.D., @ The Chinese University of Hong Kong (Prof. Chow, H.-F.) 2005- Postdoctoral fellow @ Harvard University (Prof. Corey, E. J.) 2008- Assistant Professor @ National University of Singapore 2014- Associate Professor @ National University of Singapore 2015- Assistant Professor @ The Chinese University of Hong Kong 2019- Professor @ The Chinese University of Hong Kong

Research topic: Organocatalysis, Asymmetric halogenation reactions, Multi-component synthesis and Novel functional molecules synthesis for biological studies

¹⁾ https://www.cyclopropenium.com/about-tristan

²⁾ https://chem.cuhk.edu.hk/people/academic-staff/yyy/

³⁾ https://academictree.org/chemistry/publications.php?pid=504805

Contents

1. Introduction

Application of Cyclopropenium lons in Catalysis Reactivity (Tristan H. Lambert group)

2-2. Noncovalent Interaction (Ying-Yeung Yeung group)

3. Summary

Design of Catalyst (1)

Nucleophilic substitution reaction promoted by stable cation

stable cation

²⁾ Wilson, R. M.; Lambert, T. H. Acc. Chem. Res. 2022, 55, 3057.

Appel Type Chlorination

¹⁾ Vanos, C. M.; Lambert, T. H. Angew. Chem. Int. Ed. 2011, 50, 12222.

²⁾ Wilson, R. M.; Lambert, T. H. Acc. Chem. Res. 2022, 55, 3057.

Proposed Reaction Mechanism

1) Vanos, C. M.; Lambert, T. H. Angew. Chem. Int. Ed. 2011, 50, 12222.

2) Wilson, R. M.; Lambert, T. H. Acc. Chem. Res. 2022, 55, 3057.

Design of Catalyst (2)

Stable cation of conjugate acid \rightarrow Strong basicity

1) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. **2012**, *134*, 5552.

2) Bandar, J. S.; Barthelme, A.; Lambert, T. H. Chem. Sci. 2015, 6, 1537.

Asymmetric 1,4-Addition

- 1) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. **2012**, *134*, 5552.
- 2) Bandar, J. S.; Barthelme, A.; Lambert, T. H. Chem. Sci. 2015, 6, 1537.

Proposed Reaction Mechanism

1) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. **2012**, 134, 5552.

2) Bandar, J. S.; Barthelme, A.; Lambert, T. H. Chem. Sci. 2015, 6, 1537.

Design of Catalyst (3)

1) Weiss, R.; Klaus Sohloter, K. *Tetrahed. Lett.* **1975**, *40*, 3491.

2) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318.

Electrophotocatalytic Coupling

Proposed Reaction Mechanism (1)

1) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318.

Proposed Reaction Mechanism (2)

HOMO-SOMO Level Inversion

1) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. Angew. Chem. Int. Ed. 2019, 58, 13318.

Stable Radical Dication B

Contents

1. Introduction

Application of Cyclopropenium lons in Catalysis
 Reactivity (Tristan H. Lambert group)

2-2. Noncovalent Interaction (Ying-Yeung Yeung group)

3. Summary

Design of Catalyst (4)

Co-catalyst enabled by electrostatic interaction between cyclopropenium catalyst A and anionic catalyst B

Asymmetric Bromination and Ring Expansion²¹

1) Zheng, T.; Chen, R.; Huang, J.: Gonçalves, T. B.; Huang, K.-W.; Yeung, Y.-Y. *Chem.* **2023**, *9*, 1255.

Proposed Reaction Mechanism

¹⁾ Zheng, T.; Chen, R.; Huang, J.: Gonçalves, T. B.; Huang, K.-W.; Yeung, Y.-Y. Chem. 2023, 9, 1255.

Enantioselectivity

Nonclassical Hydrogen Bonds (NCHBs)

There seemed to be $C-H \cdot \cdot X$ hydrogen bonds induced by the inductive effect of cyclopropenium ion.

 \rightarrow It might be important to form several hydrogen bonds although each one is small interaction.

1) Zheng, T.; Chen, R.; Huang, J.: Gonçalves, T. B.; Huang, K.-W.; Yeung, Y.-Y. *Chem.* **2023**, *9*, 1255.

Design of Catalyst (5)

By introducing Br atom, the catalyst would be more polarized and thus be better for NHCBs donor.

Synthesis of Catalyst

Structure of Catalyst

³⁴Se: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁴

Hydrogenation of Imine

Friedel-Crafts Reaction

1) Yang, J.; Zhang, Y.; Wang, H.-C. F.; Huang, J.; Tse, Y.-L. S.; Yeung, Y.-Y. ACS. Catal. 2024, 14, 3018.

2) Xiu Wang, X.; Wang, Z.; Zhang, G.; Zhang, W.; Wu, Y.; Gao, Z. *Eur. J. Org. Chem.* **2016**, 502.

Proposed Reaction Mechanism*

* Reaction mechanism was not mentioned in the literature.

1) Yang, J.; Zhang, Y.; Wang, H.-C. F.; Huang, J.; Tse, Y.-L. S.; Yeung, Y.-Y. ACS. Catal. 2024, 14, 3018.

Site Isolation of Anion and Cation

Negative charge is mainly localized at Br atom. In contrast, positive regions are found on the cyclohexyl hydrogens.

1) Yang, J.; Zhang, Y.; Wang, H.-C. F.; Huang, J.; Tse, Y.-L. S.; Yeung, Y.-Y. ACS. Catal. 2024, 14, 3018.

31

The Catalyst Activated Imine by NCHBs

Bonding energy = -13.4 kcal/mol

32

as the ratio of HMPA was increased. \rightarrow NCHBs are likely to exist.

\rightarrow Several hydrogen bonds are formed to activate the substrate although each one is small interaction.

1) Yang, J.; Zhang, Y.; Wang, H.-C. F.; Huang, J.; Tse, Y.-L. S.; Yeung, Y.-Y. ACS. Catal. 2024, 14, 3018.

Summary

1) Wilson, R. M.; Lambert, T. H. Acc. Chem. Res. 2022, 55, 3057.

2) Yang, J.; Zhang, Y.; Wang, H.-C. F.; Huang, J.; Tse, Y.-L. S.; Yeung, Y.-Y. ACS. Catal. 2024, 14, 3018.

Appendix

Explanation of Asymmetric 1,4-Addition

1) Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 5552.

2) Bandar, J. S.; Barthelme, A.; Lambert, T. H. Chem. Sci. 2015, 6, 1537.

Catalyst Investigation of Bromination

1) Zheng, T.; Chen, R.; Huang, J.: Gonçalves, T. B.; Huang, K.-W.; Yeung, Y.-Y. *Chem.* **2023**, *9*, 1255.

DFT calculation of Bromination

1) Zheng, T.; Chen, R.; Huang, J.: Gonçalves, T. B.; Huang, K.-W.; Yeung, Y.-Y. Chem. 2023, 9, 1255.

Friedel-Crafts Reaction

Friedel-Crafts Reaction with Lewis Acid (1) ³⁹

1) Thirupathi, P.; Kim, S. S. J. Org. Chem. 2010, 75, 5240.

2) Xiu Wang, X.; Wang, Z.; Zhang, G.; Zhang, W.; Wu, Y.; Gao, Z. *Eur. J. Org. Chem.* **2016**, 502.

Friedel-Crafts Reaction with Lewis Acid (2) 40

1) Xiu Wang, X.; Wang, Z.; Zhang, G.; Zhang, W.; Wu, Y.; Gao, Z. *Eur. J. Org. Chem.* **2016**, 502.