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Please provide the reaction mechanisms. Hibiki Asai

NC

o)

1-1 (racemate)

2-1 (racemate)

. NaBHj,4 (1 equiv), EtOH, 0 °C, (d.r. = 3:2)
. PPTS (1.2 equiv), benzene, 80 °C, 70% (2 steps)
. Gals (25 mol%), molecular sieves 4 A (200 wt% for Gals) H O

toluene, 100 °C, 89%

NHz 2. Ac,0 (10 equiv), Et3N (5 equiv), DMAP (20 mol%)

 TSNHNH; (8 equiv), EtaN (16 equiv), (CHzCl)z, 65 °C, 83% o
. (NH4)2[C€(NO3)6] (5 equiv) OMe

SiO, (200 wt% for (NH,),[Ce(NO3)s])

1-2 (racemate
CH,CI,/H,0 (4/1), 0 °C, 52% ( )

. Hy (balloon), Pd/C (30 wt%), EtOAc, rt, 100%

1. NaNO, (10 equiv), CuCl (5 equiv)
HCI (Et,O solution, 4 equiv), acetone, rt, 40%*

CH,Cl,, rt, 93%
3. BF3+OEt, (17 equiv), CHyClo/H,0 (80/1), rt, 52%

2-2 (racemate)

*byproduct was obtained in 45% yield.

| Ts: p-toluenesulfonyl

Z N~ Bz: benzoyl
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1. NaBH, (1 equiv), EtOH, 0 °C, (d.r. = 3:2)

2. PPTS (1.2 equiv), benzene, 80 °C, 70% (2 steps)

3. Gals (25 mol%), molecular sieves 4 A (200 wt% for Gals) H O
toluene, 100 °C, 89%

4. TsSNHNH; (8 equiv), Et3N (16 equiv), (CH2Cl)y, 65 °C, 83% p H

5. (NH4)2[Ce(NOs)e] (5 equiv)

Si0, (200 Wt% for (NH4),[Ce(NOs)e]) 12 (racemate)
CH,Cly/H,0 (4/1), 0 °C, 52%

OMe

. Hy (balloon), Pd/C (30 wt%), EtOAc, rt, 100%

Hamlin, A. M.; Cortez, F. J.; Lapointe, D.; Sarpong, R. Angew. Chem. Int. Ed. 2013, 52, 48544857 .
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*The stereochemistry of major
procudt wasn’t determined.
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SiO, may be added for simplification work-up procedure to absorb Ce reagent.
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Discussion:
1. Cation cyclization
1-1. Concerted-like pass way

a) supports of concerted-like cyclobutylation

R = COzEt

R GaCl3 (10 mol%) R><J\/\ R ~ GaClz (10 mol%) R><j|\)n_|3r
R R _— R
\ toluene, 40 °C n-Pr \\ toluene, 60°C R =
n-Pr 77% 69%
n-Pr

1-21-E (E/Z = 91/9)

t

GaCl; (10 mol%)

toluene, 40 °C

79% —These experiments suggested concerted-like cyclobutylation.
Chatani, N.; Inoue, H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294—10295.
plausible mechanism cl,Gal
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retro-[2+2] ;
><jleleCtFOCYC“C reaction g xR Formation of cyclobutene and
’ R 2 conrotary retro-[2+2] cycloaddition
i R1 conrotary H R in thermal condition gives diene 1-22.
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slow conrotary ' O
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1-22-E (E/Z = 91/9)

O

1-21-Z (E/Z = 10/90) 1-22-Z (E/Z = 11/89)

*Geometry of olefin was retented.
*Depending on the substrates, cyclobutene was obtained.

Retro-[2+2] cycloaddition couldn’t occur because disfavored trans-olefin on 7-membered ring would be formed.

On the other hand, cation 1-9 is stable due to conjugation with aromatic ring.

cyclobutane of 1-8 would be faster.

Therefore, ring opening of



1-2. Stepwise pass way
From 1-6, stepwise pass way might be possible because firstly generated benzyl cation would be stable.

a) First cyclization
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Faster 6-exo cyclization is favored.

b) Rearrangement
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From 1-32, cyclobutane formation and ring opening give 1-10 likewise.
Another pass way from 1-32 to 1-10 is worth being considered, i.e. cyclopropane formation, but this pass way is
unfavored because of low electron density of Ga'''.



c) Possible pass way toward another product

OMe
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1-38
cross conjugation linear conjugation (favored)

If cyclopropane was formed, 1-38 would be also obtained, which is unlikely because of unfavored 1-33.

«cf. PtCl, condition

-39

® =

1-40 1-41

PtCl, (10 mol%), toluene, 80 °C 1-40:1-41 = 1:1.1
Galj (10 mol%), toluene, 23 °C 1-40:1-41 =0:1  *The yields were not mentioned.

Simmons, E. M.; Sarpong, R. Org. Lett. 2006, 8, 2883—-2886.

In the condition using PtCl,, 1-40 was also obtained. Pt! more easily gives electrons than Ga'', so  cyclopropane
formation occurred competitively. On the other hand, Gal; gave only 1-41.

2-1 (racemate)

1. NaNO, (10 equiv), CuCl (5 equiv)
HCI (Et,0 solution, 4 equiv), acetone, rt, 40%

NH2 2. Ac,0 (10 equiv), EtsN (5 equiv), DMAP (20 mol%)
CH,Cl,, rt, 93%
3. BF3*OEt, (17 equiv), CH,Cl,/H,0 (80/1), rt, 52%

2-2 (racemate)

Zhu, M.; Li, X.; Song, X.; Wang, Z.; Liu, X.; Song, H.; Zhang, D.; Wang, F.; Qin, Y.
Chin. J. Chem. 2017, 35, 991-1000.
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Thermally stable 3-substituted
olefin was finally obtained.




Discussion: In the presence of H,0, carbocation was soomthly trapped by H,O.
1. Arole of H,O
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2-34 (48%)

Without H,O, unstable 2° carbocation wasn’t trapped. Therefore, elimination of AcOH occurred before aza-
Prins cycliation to give diene 2-27, from which undesired cyclobutane formation proceeded.

AcO

NaOAc/HOAc, 80 °C

68% HO

227 2-35

In addition, cyclobutane was formed from 2-27 in AcOH at high temperature, which indicates 2-27 was an
intermediate generated from 2-18.



