Please provide the reaction mechanisms.

1

2

Problem Session (2) Answer

Topic: Recent total synthesis by Carreira's group

Introduction:

1. Prof. Erick M. Carreira¹⁾

1984 B. S., @ University of Illinois at Urbana-Champaign (Prof. Denmark)

1990 Ph.D., @ Harvard University (Prof. Evans)

1990- Postdoctoral fellow @ California Institute of Technology

1992- Assistant Professor @ California Institute of Technology

1996- Associate Professor @ California Institute of Technology

1997- Professor @ California Institute of Technology

1998- Professor @ ETH Zürich

Research topic: Asymmetric synthesis of biologically active, stereo-chemically complex, natural products

2. (+)-Pedrolide

isolation: from Euphorbia pedroi (2021)²⁾

biological activity: P-glycoprotein inhibitory properties

structural features: 5-5-6-6-3 fused pentacyclic carbon skelton,

bicyclo [2,2,1] heptane

total synthesis: Carreira's group (2023) → Problem 1

3. Neocaesalpin A (Problem 2)

isolation: from Caesalpinia bonduc (1996)3)

biological activity: unknown

structural features: 6-6-6-5 fused cassane type skelton, butenolide ring

total synthesis: Carreira's group (2023) → Problem 2

Problem 1: Total synthesis of (+)-Pedrolide

Answer

1-6

Discussion 1: Diels-Alder cascade

- 1-0. Difficulties to use 5-alkyl-substituted cyclopentadienes
 - · 1,5-sigmatropic hydrogen shifts

· dimerization

Because of these difficulties, application of 5-alkyl-substituted cyclopentadienes to total synthesis is very limited. Authers decided to generate cyclopentadiene in situ from a norbornadiene derivative.

1-1. Strain-Promoted Inverse Electron-demand Diels-Alder Cycloaddition

1-2. Reactivity of tetrazine

The reactivity of tetrazines was highly dependent on the 3,6-substituents.

1. R=Me, Ph

Tetrazines are least electron defficient, so the first Diels-Alder reaction with norbornadiene did not take place.

2. R= CO₂Me, CI

Tetrazines are very electron defficient, so the first Diels-Alder reaction with norbornadiene readily took place.

However, tautomerization from **1-17** to **1-19** was dominant and desired fragmentation to cyclopentadiene hardly took place.

3. R= 2-pyridine

Tetrazines are less electron defficient, so the first Diels-Alder reaction with norbornadiene slowly took place.

Fragmentation readily occured but overreaction was problematic. (see 1-3.)

1-3. Over reaction

OSiEt₃

$$N = N$$

$$N=N$$

desired product of cascade reaction

2,5-norbornadiene

In order to surpress this over reaction, reaction conditions were optimized.

- · equivalent of 1-3 was decreased to 0.85 eq
- · concentration was lowered to 0-4 °C
- · 2,5-norbornadiene was used as additive to react with excesss 1-3

AcOH

Problem 2: Total synthesis of neocaesalpin A

Discussion 2: Hg(OAc)₂ oxidation

2-1. Oximercuration-Demercuration

2-2. Unintentional oxidation

Authors intended to use C11 Boc alcohol as a neighboring group which participates in selective intramolecular oximercuration of C1-C2 olefin.

However, the product of above reaction was γ, δ -unsaturated butenolide.

This result suggests that the least hindered and electron rich olefin (highlighted in pink) reacted in these conditions.

With this result, authers adopted the same conditions to 2-1 and successfully obtained oxidized product.

- 2-3. examples of oxidation with Hg(OAc)₂
- 2-3-1. Allylic oxidation reported by Rappoport⁴⁾

mechanism explained by authers

They report that Hg^0 was obtained when the substrate was excess, and $Hg^1_2(OAc)_2$ was obtained when $Hg(OAc)_2$ was excess.

2-3-2. aromatisation of carvone reported by Treibs⁵⁾

intermediate proposed by Treibs

2-3-3. allylic acetylation reported by Dethe⁶⁾

mechanism proposed by Treibs was incorrect.

7

corrected mechanism of aromatization

In case of 2-35, there is no H in the antiperiplaner relationship with OAc.

Therefore, the reaction stopped at **2-40**. Isolation of reaction intermediate validated the above mechanism.

Discussion 3: Selective acetylation

In order to selectively acethlate C1 and C2, the authers adopted 2 step conversion. C1(selectively acetylated using orthoester) →C2 (acetylated selectively in mild conditions)

References

- 1) https://carreira.ethz.ch/the-group/people/prof-dr-erick-m-carreira.html
- 2) Ferreira, R. J.; Spengler, G.; Orthaber, A.; dos Santos, D. J. V. A.; Ferreira, M.-J. U. Org. Lett. 2021, 23, 274.
- 3) Kinoshita, T.; Kaneko, M.; Noguchi, H.; Kitagawa, I. *Heterocycles* **1996**, *43*, 409. 4) Rappoport, Z.; Winstein, S.; Young, W. G. *J. Am. Chem. Soc.* **1972**, *94*, 2320.
- 5) Treibs, W. Justus Liebigs Ann. Chem. 1953, 581, 59.
- 6) Dethe, D. H.; Dherange, B. D.; Boda, R. Org. Chem. Front. 2015, 2, 159.