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1-1. Reaction mechanism
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A sodium ion solvated by THF 
hinders ortho-substitution sterically.
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1-2. discussion 1: dearomative alkylation
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1

yield (2 steps) dr (1-8 : 1-8-epi)

NaN(TMS)2;
1-3
Sc(OTf)3

1-8

1-2-1. Asymmetric induction by electrophile

1-8-epi is predominantly yielded. The chiral 
auxiliary improved the ratio, but 1-8 remains a 
minor product.
The asymmetric electrophile 1-3 appears to 
contribute to the preferential generation of 
1-8-epi when comparing entries 1 with 2.
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The nucleophile presumably approaches the electophile from its tail to diminish steric repulsion.
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1-81-8-epi

1-2-1-1. The most plausible explanation
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The steric repulsion 
destabilizes 1-0’-β, thereby 
inhibiting an attack from the 
β face.

Na

Olefin A is too close to the electrophilic center, requiring much strain to align parallel to the aromatic ring.

Olefin C is positioned at such a distance that the conformations with an optimal alignment for the donor-accepter 
interactions are entropically unfavorable.
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These effects might be possible, 
but may not be dominant ones.
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1-3. discussion 2: HfCl4-mediated cyclization

Table 2

entry

1

2

3

4

5

Lewis acid temperature yield dr at C1

AlCl3 

Sc(OTf)3 

ZrCl4 

Hf(OTf)4

HfCl4

rt to 80 ºC

80 ºC

rt

rt to 80 ºC

rt

no reaction

14%

47%

no reaction

43%

-

2.6 : 1

1.4 : 1

-

2.6 : 1

*1 eq of Lewis acid was used in each reaction.
**Solvent: dichloroethane

1-3-1. Reaction mechanism

1-3-2. HfCl4 as a Lewis acid

R
OMeO

HO
R

R

R

HfCl4 R
OMeO

HO
R

R

R

Cl4Hf
R

O OMe

R
RO

1-9-α

R

Cl4Hf

1-8 1-9

R
O OMe

R
R

Me

R
O

1-2

R
O OMe

R

O

Cl4Hf

R
O OMe

R
R

Me

R
O

1-2-epi

Hafnium is more oxophilic than most 
metals, which is one of the reasons 
for its high Lewis acidity.

No reaction proceeded with Hf(OTf)4 
(entry 4). This can be attributed to its 
strong electronegativity, which inhibits 
electron flow from oxygen.
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promotes the Conia-ene type reaction.
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The alkylation step might be reversible with hafnium due to its high oxophilicity and could afford the products 1-2 
and 1-2-epi in the ratio thermodynamically determined.
The kinetic product with zirconium is 1-2 too, but the diastereomer excess can be different.

H H
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2-1. Reaction mechanism
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Moreover, the instability of 1-9-Zr in comparison to 1-9-Hf, arising from the relatively weaker Zr-O bond, likely 
reduces the stereoselectivity of the reaction by narrowing the energy gap between the two transition state 
leading to 1-2 and 1-2-epi (early transition state).
This effect appears more plausible in the context of this reaction, which involves the formation of strong C-C 
bonds and does not seem to be reversible.
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step 12-4 step 22-5
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The author initially aimed for direct alkylation via the enolate genarated by deprotonation at the activated methylene, 
C1 (path a). However, this approach failed due to the low acidity of the proton, located on the bridgehead, with a σ 
bond poorly overlapping with adjacent π orbital.
Instead, the C26 proton was removed first to generate a bond between C4-C9 (path b).
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2-3 can be generated via intermediate 2-11, which has the C2-C4 bond. However, the formation of this bond 
requires sp2 carbon in the cyclopropane ring, and thus hard to achieve.

2-3. discussion 4: oxidative fragmentation
2-3-0. Screening of oxidants
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The kinetic product 2-14-a is not 
optimal for elimination because 
of the poor orbital overlapping.
2-14-b undergoes elimination 
easily and generate 2-5.
2-14-a and 2-14-b seem to be in 
the equilibrium, and the ratio of 
path a to b depends on its 
equilibrium constant and the 
reaction rate of the elimination 
step.
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(continued to the next page)
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FeCl3 can induce both ionic and radical 
cleavage of the cyclopropane ring.
The radical mechanism might be faster.
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