topic: Total synthesis of hyperforin

1-2. discussion 1: dearomative alkylation

1-2-0. Screening of the substrate

Table 1

entry	R'	yield (2 steps)	dr (1-8 : 1-8-epi)
1	32	30%	1 : 17
2	, Sec. ,	44%	1 : 2.8
3	7500 V	36%	1 : 1.5

1-8-epi is predominantly yielded. The chiral auxiliary improved the ratio, but **1-8** remains a minor product.

The asymmetric electrophile **1-3** appears to contribute to the preferential generation of **1-8-epi** when comparing entries 1 with 2.

1-2-1. Asymmetric induction by electrophile

The C6-C7 bond is fixed to minimize the steric repulsion with the approaching nucleophile.

1-2-1-1. The most plausible explanation

The nucleophile presumably approaches the electophile from its tail to diminish steric repulsion.

1-2-1-2. Another explanation

- Olefin A is too close to the electrophilic center, requiring much strain to align parallel to the aromatic ring.
- Olefin **C** is positioned at such a distance that the conformations with an optimal alignment for the donor-accepter interactions are entropically unfavorable.

The steric repulsion destabilizes 1-0'- β , thereby inhibiting an attack from the β face.

These effects might be possible, but may not be dominant ones.

1-2-2. The role of chiral auxiliary

1-3. discussion 2: HfCl₄-mediated cyclization

1-3-1. Reaction mechanism

1-3-2. HfCl₄ as a Lewis acid

Table 2

entry	Lewis acid	temperature	yield	dr at C1	_
1	AICI ₃	rt to 80 °C	no reaction	-	_
2	Sc(OTf) ₃	80 °C	<u>14%</u>	2.6 : 1	
3	ZrCl ₄	rt	47%	<u>1.4 : 1</u>	
4	Hf(OTf) ₄	rt to 80 °C	no reaction	-	
5	HfCl ₄	rt	43%	2.6 : 1	

Hafnium is more oxophilic than most metals, which is one of the reasons for its high Lewis acidity.

No reaction proceeded with Hf(OTf)₄ (entry 4). This can be attributed to its strong electronegativity, which inhibits electron flow from oxygen.

^{**}Solvent: dichloroethane

The alkylation step might be reversible with hafnium due to its high oxophilicity and could afford the products **1-2** and **1-2-epi** in the ratio thermodynamically determined.

The kinetic product with zirconium is 1-2 too, but the diastereomer excess can be different.

^{*1} eg of Lewis acid was used in each reaction.

$$\begin{array}{c} \bigoplus_{R} \bigoplus_{R}$$

Moreover, the instability of **1-9-Zr** in comparison to **1-9-Hf**, arising from the relatively weaker Zr-O bond, likely reduces the stereoselectivity of the reaction by narrowing the energy gap between the two transition state leading to **1-2** and **1-2-epi** (early transition state).

This effect appears more plausible in the context of this reaction, which involves the formation of strong C-C bonds and does not seem to be reversible.

2-1. Reaction mechanism

2-2. disucussion 3: cyclopropane intermediate

2-2-1. Reaction mechanism - author's proposal

The author initially aimed for direct alkylation via the enolate genarated by deprotonation at the activated methylene, C1 ($\it path a$). However, this approach failed due to the low acidity of the proton, located on the bridgehead, with a σ bond poorly overlapping with adjacent π orbital.

Instead, the C26 proton was removed first to generate a bond between C4-C9 (path b).

2-3. discussion 4: oxidative fragmentation

2-3-0. Screening of oxidants

TMSO OMe conditions R CONDITIONS Ne TMS 2-3 CONDITIONS NE TMS CONDI

Table 3

entry	conditions	yield
1	FeCl ₃ (9.0 eq), THF, 0 °C	41%
2	PhI(OAc) ₂ (2.0 eq), THF, 0 °C	21%
3	I ₂ (9.0 eq), THF, 0 °C	73%

2-3-1. Reaction mechanism

2-3-1-1. Reaction mechanism when I_2 is used as oxidant

2-3-1-2. Reaction mechanism when FeCl₃ is used as oxidant

(continued to the next page)

(continued)

FeCl₃ can induce both ionic and radical cleavage of the cyclopropane ring. The radical mechanism might be faster.

2-3-2. Possible side pathway led by a single electron oxidant

References:

- 1) (a) Frankel, E. N.; Selke, E.; Glass, C. A. J. Am. Chem. Soc. 1968, 90, 2446.
 - (b) Vasil" ev, A. A.; Serebryakov, E. P. Russ. Chem. Bull. 2002, 51, 1341.