Synthesis of Trisubstituted Alkenes by Cross-Metathesis Reactions

Literature Seminar 2023. 07. 29

M1 Manaka Matsumoto

Contents

1. Introduction

2. Catalytic Cross-Metathesis Reactions That Afford *E*-and *Z*-Trisubstituted Alkenyl Bromides: Scope, Appplications, and Mechanistic Insights (by Hoveyda Group, 2023, main paper)

Olefin Metathesis

Challenges of Cross Metathesis

Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360.
 Xu, C.; Shen, X.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 10919.
 Hoveyda, A. H.; Liu, Z.; Qin, C.; Koengeter, T.; Mu, Y. Angew. Chem., Int. Ed. 2020, 59, 22324.

Selective Cross Metathesis

Classification of Olefins

1) Xu, C.; Shen, X.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 10919.

Z-Selective Cross Metathesis

8

Introduction of Prof. Hoveyda

Prof. Amir H. Hoveyda

1981 B. A., @ Columbia University
1986 Ph.D., @ Yale University (Prof. Schreiber)
1986-1987, 1988-1990 Postdoctoral fellow @ Harvard University
1987-1988 Pfizer Central Research, Cancer Group
1990- Assistant Professor @ Boston University
1994- Professor @ Boston University
1998- Patricia and Joseph T. '49 Vanderslice Millennium Professor of
Chemistry @ Boston College
2014- Distinguished Visiting Professor @ Technion-Israel Institute of
Technology
2019- Director of the Laboratories of Catalytic Chemical Synthesis at the
University of Strasbourg

Research topic: catalysts for chemical synthesis, total synthesis of complex molecules

9

Contents

1. Introduction

2. Catalytic Cross-Metathesis Reactions That Afford *E*-and *Z*-Trisubstituted Alkenyl Bromides: Scope, Appplications, and Mechanistic Insights (by Hoveyda Group, 2023, main paper)

Trisubstituted Alkene in Natural Products ¹¹

Approaches to Trisubstituted Alkene

- 1) Koengeter, T.; Qin, C.; Mai, B. K.: Liu, Q.; Mu, Y.; Liu, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2023, 145, 3774.
- 2) Mori, K.; Tamura, H. *Liebigs Ann. Chem.* **1990**, 361.
- 3) Fujiwara, N.; Kinoshita, M.; Akita, H. Tetrahedron: Asymm. 2006, 17, 3037.

12

Strategies using Cross Metathesis

Direct cross metathesis

G or G¹= H: Homo-metathesis, unstable methylidene complex G or G¹= Me: Low reactivity

2 steps strategy

CM of Two Trisubstituted Alkenes

1) Koengeter, T.; Qin, C.; Mai, B. K.: Liu, Q.; Mu, Y.; Liu, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2023, 145, 3774.

2) Liu, Q.; Mu, Y.; Koengeter, T.; Schrock, R. R.; Hoveyda, A. H. Nat. Chem. 2022, 14, 463.

Small Alkene Additive

Catalytic Cycle (1)

Step 1: Catalyst initiation

16

Catalytic Cycle (2) and *E/Z*- Selectivity

2) Nguyen, T. T.; Koh, M. J.; Mann, T. J.; Schrock, R. R.; Hoveyda, A. H. Nature 2017, 552, 347.

Catalytic Cycle (3)

Roles of Small Alkene Additive (1)

1) Koengeter, T.; Qin, C.; Mai, B. K.: Liu, Q.; Mu, Y.; Liu, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2023, 145, 3774.

2) Liu, Q.; Mu, Y.; Koengeter, T.; Schrock, R. R.; Hoveyda, A. H. Nat. Chem. 2022, 14, 463

Roles of Small Alkene Additive (2)

1) Koengeter, T.; Qin, C.; Mai, B. K.: Liu, Q.; Mu, Y.; Liu, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2023, 145, 3774.

2) Liu, Q.; Mu, Y.; Koengeter, T.; Schrock, R. R.; Hoveyda, A. H. Nat. Chem. 2022, 14, 463

Roles of Small Alkene Additive (3)

Roles of Small Alkene Additive (4)

2) Liu, Q.; Mu, Y.; Koengeter, T.; Schrock, R. R.; Hoveyda, A. H. Nat. Chem. 2022, 14, 463

Substrate Scope (3) -Sterically Demanding Alkenes-

Effects of Alkene-Substitution								
Me	Br Me + (5 eq)	$\frac{CO_2Me}{Mo-1a}$ Mo-1a (5 benzene, 2 (1 eq)	.0 mol%)		Br Me			
	substitution	conv, conv to CM product	selectivity	yield				
	$R^1 = R^2 = H$	<u>89%,</u> <u>52%</u>	>98:2 <i>Z</i> : <i>E</i>	54%				
	R^1 = Me, R^2 = H	>98%, 77%	97:3 <i>Z</i> : <i>E</i>	80%				
	R ¹ = H, R ² = Me	>98%, 62%	98:2 <i>Z</i> : <i>E</i>	64%				
	$R^1 = R^2 = Me^*$	66%, 61%	98:2 <i>Z</i> : <i>E</i>	62%				

*/=\	substitutions	efficiency	homo metathesis		
Et Ét (6.0 mol%) was added	$R^1 = R^2 = H$	high	much, generates methylidene	NAr^1 Mo Ar^2O	
	$R' = Me, R^2 = H$ and $R^1 = H, R^2 = Me$	middle	less, no methyliedne	methylidene complex (unstable)	
	$R^1 = R^2 = Me$	low	none		

Total Synthesis of Ambrein (1)

Total Synthesis of Ambrein (2)

Total Synthesis of Ambrein (3)

Summary

Total synthesis of ambrein

