Topic: Guaianolide sesquiterpenes

Answer

* Grevels, F. W.; Jacke, J.; Goddard, R.; Lehmann, C. W.; Özkar, S.; Saldamli, S. Organometallics 2005, 24, 4613-4623.

1-8
η^{2}-alkyne complex* OPMB

1-10
bond rotation
1-10'

1-9 $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OPMB}$

1-10"

** Barluenga, J.; Ballesteros, A.; Bernardo de la
 Rúa, R.; Santamaría, J.; Rubio, E.; Tomás, M. J. Am. Chem. Soc. 2003, 125, 1834,

Discussion : cyclization pathway

Four possible cyclization modes from 1-9 can be considered.

path a: 3-exo-trig

path b: 7-endo-trig

path c: 5-exo-trig

path d: 5-endo-trig
path a: 3-exo-trig see Answer (1-1 to 1-2)

Reaction sites were close to each other, making three-membered ring formation favourable.
path b: 7-endo-trig

7-membered ring formation is unfavourable. Poor orbital interaction would make this pathway sluggish.
path c: 5-exo-trig

1-9

* Proposed stereochemistries

Diene moiety should be planar to make nucleophilic attack at C 7 position possible. As a result, orbital interaction would become relatively poor. Thus 5-exo-trig product 1-3 was formed as a minor one.

Is there any possibility that enone moiety rotates around $\mathrm{C} 1-\mathrm{C} 10$ bond? (see Next page)

1-9

$\mathrm{PhMe}_{2} \mathrm{Si}$ 1-9'

Answer

For Z-olefin 1-4 :
Transformation from 1-4 to 1-6 was fast. The reasons are 1. entropically favoured 3-exo-trig cyclization, 2. rapid divinylcyclopropane rearrangement that releases ring strain.

In the case of E-isomer, seven-membered ring would be formed via 7 -endo-trig cyclization pathway. Due to the sluggishness associated with this cyclization manner, efficiency of transformation from E-isomer was much worse than that from Z-isomer.
Futher insight into the difference of the reaction rate: Addition of MeOH

For Z-olefin 1-4 : 3-exo-trig cyclization (1-16 to 1-17) and divinylcyclopropane rearrangement (1-17 to 1-18) were so fast that intermediates could not be trapped by MeOH .
For E-olefin 1-6 :

Because 7-endo-trig cyclization was slow, intermediate 1-21 was intercepted by MeOH to afford 1-24.

a. Xirui Hu. Doctor Thesis, University of California, Berkeley, 2018.
b. Hu, X.; Musacchio, A. J.; Shen, X.; Tao, Y.; Maimone, T. J.
J. Am. Chem. Soc. 2019, 141, 14904-14915.

2-3
b. SnCl_{2} (5 equiv), $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(15 \mathrm{~mol} \%)$

DMF, $60^{\circ} \mathrm{C}, 95 \%(2-2: 2-3=>20: 1)$

Answer

- conditions a: SnCl_{2} (5 equiv), NaI (5 equiv), DMF, $60^{\circ} \mathrm{C}$, 97% (2-2:2-3 = 1:1)

No stereoselectivity was observed because diplole moment and steric repulsion seen in 2-6' and 2-6" canceled each other.

- conditions b: SnCl_{2} (5 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PhCN}_{2}\right.$ ($15 \mathrm{~mol} \%$), $\mathrm{DMF}, 60^{\circ} \mathrm{C}, 95 \%(\mathbf{2 - 2 : 2 - 3}=>20: 1$)

Discussion : formation of allyl trichlorostannane species

Mechanism of formation of allyl trichlorostannane using allylchloride, $\mathrm{Sn}^{\mathrm{II}} \mathrm{Cl}_{2}$ and catalytic $\mathrm{Pd}^{\mathrm{II}} \mathrm{Cl}_{2}(\mathrm{PhCN})_{2}$

- Overall reaction at the initiation of catalytic cycle
step 1 : Formation of π-allyl palladium complex
1-1. Generation of $\mathrm{Pd}-$ species ${ }^{\text {ref } 1}$

1-2. $\mathrm{Pd}-\mathrm{Sn}$ bimetallic complex as an active species at the initiation step ${ }^{\text {ref } 2}$

(COD, 1 equiv) $\xrightarrow[85 \%]{\mathrm{CH}_{2} \mathrm{Cl}_{2} / \text { acetone }}$
$(\mathrm{COD}) \mathrm{Pd}^{0} \mathrm{Cl}\left(\mathrm{Sn}^{\mathrm{IV}} \mathrm{Cl}_{3}\right) \equiv$

electronegativity (Pauling scale): Pd 2.20, Sn 1.96, C $2.55, \mathrm{Cl} 3.16$
 $\xrightarrow[85 \%]{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text { /acetone }}$

 (2 equiv)
catalyst ($2 \mathrm{~mol} \%$)

proposed dual activation

Pd-Sn bimetallic catalyst promoted the replacement of allylic hydroxy group with anisole, a soft nucleophile.
Authers proposed dual-activation model 2-18 based on the NMR measurement. When 2-16 was mixed with Pd-Sn bimetallic catalyst, ${ }^{13} \mathrm{C}$ chemical shift of $\mathrm{C} 1, \mathrm{C} 2$ and C 3 positions were shifted downfield. In 2-18, soft Pd center is coordinated with alkene whereas hard Sn center is with hydroxy group.
my proposal (at the initiation step)

step 2 : Insertion of SnCl_{2}
2-1. Insertion of $\mathrm{Sn}_{\underline{\mathrm{U}}}^{\underline{C_{2}}} \underline{-}_{2}$ to η^{3}-allyl-chloro-palladium complex ${ }^{\text {ref } 3}$

2-2. Sluggish reductive elimination from η^{3}-allyl-trichlorostannly-palladium complex ${ }^{\text {ref }} 3$

step 3 : Formation of allyl trichlorostannane

- Effect of excess amount of $\mathrm{Sn}_{\underline{\underline{U}} \mathrm{Cl}_{2}}$ ref 1

Excess amount of $\mathrm{Sn}^{\text {II }} \mathrm{Cl}_{2}$ against palladium species is essential for the formation of allyl trichlorostannane 2-15.
Reaction mechanism for generation of 2-15 from 2-25 has not elucidated yet.

 coordination is common to tin compounds, and can also be observed in a single molecule. ${ }^{\text {ref } 4}$
Considering this property, it can be suggested that allyl trichlorostannane 2-15 could be formed from complex 2-25 via inner-sphere attack of tin (IV) center whose nucleophilicity would be enhanced by coordination of $\mathrm{Sn}^{\mathrm{II}} \mathrm{Cl}_{2}$.
It is unlikely that $\mathrm{Sn}^{\mathrm{II}} \mathrm{Cl}_{3}{ }^{-}$would be formed in situ, considering that free Cl ion would not exist in this synstem. Thus, possibility of outer-sphere attack of $\mathrm{Sn}^{\mathrm{II}} \mathrm{Cl}_{3}{ }^{-}$would be low.

* After the initiation is over, Pd^{0} species, not Pd -Sn bimetallic catalyst, catalyzes the formation of allyl trichlorostannane species (shown below).

Reference

ref 1. Hirako, K.; Miyamoto, Y.; Kakiuchi, K.; Kurosawa, H. Inorganica Chimica Acta, 1994, 222, 21.
ref 2. Das, D.; Pratihar, S.; Roy, U. K.; Mal, D.; Roy, S. Org. Biomol. Chem. 2012, 10, 4537.
ref 3. Musco, A.; Pontellini, R.; Grassi, M.; Sironi, A.; Meille, S. V.; Ruegger, H.; Ammann, C.; Pregosin, P. S. Organometallics 1988, 7, 2130.
ref 4. Schulte, M.; Gabriele, G.; Schürmann, M.; Jurkschat, M. K.; Duthie, A.; Dakternieks, D. Organometallics 2003, 22, 328.

