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Please explain each reaction mechanism.
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1: One-pot synthesis of a,B-unsaturated ketone from aldehyde
EtNO, (2.0 equiv)
o Et3N (2.0 equiv), rt; o
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DIscussion 1: :
Modified Nef reaction _~_

with molecular oxygen 1-2

Discussion 1: Modified Nef reaction with molecular oxygen
1. Classical Nef reaction

The original procedure for the nitro to carbonyl transformation, as described by Nef, was essentially the hydrolysis
in strongly acidic conditions (typically pH < 1) of nitronate salt 1-12 produced by basic treatment of a nitroalkane
1-11.ref1
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The harsh conditions have encouraged the development of alternative methods that can be performed under
oxidative, reductive, or nearly neutral conditions.

The modified condition used in the problem was one of the 'mild' Nef reaction developed by the Hayashi group.”®"2



2. Mechanistic insights"®’2
2-1. The origin of the keto-oxygen
entry conditions comments
/\)\ DABCO, air 0
1 — _— X 82% control experiment
CzH4s NO, MeCN, rt, 20 h C7H15/\)J\
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isomerization.

2. The involvement of radical species
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No epimerization was observed by the base.
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In this reaction, a single-electron transfer (SET) process occurred.

A similar reacion mechanism can be considered in this problem.
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3. Intramolecular vs. Intermolecular

There is two possible pathway after SET process. o e)
a: intramolecular " b 0.9.0 O\@/,OJ
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entry concentration [M] temperature [°C] isolated yield [%]
1 0.25 23 82 <5
2 0.005 23 71 8
3 0.005 =40 65 16

The sulfoxide 1-35 was formed during the oxidative conversion of the nitro group into the ketone and the yield of
1-35 increased at lower concentrations and lower temperatures. In addition, sulfide 1-34 was not oxidized by
molecular oxygen. These results indicate that the sulfide was oxidized in an intramolecular manner, which would
support the involvement of a 1,1-dioxirane species 1-36 during the course of the reaction.
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Judging from the results, pathway b is more favorable.
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2: Preparation of aldehyde 1. ICH,CI (3.0 equiv),
LiBr (2.8 equiv),
TMSCH,Li (2.8 equiv)
THF, =78 °C to rt;
sat. aq. NH4ClI, 65%
2. TosMIC (1.1 equiv)
t-BuOK (2.2 equiv), THF
-78 °C;
MeOH (2.2 equiv), 60 °C;
O i-BusAlH (2.0 equiv) : cHo

S FBUAlR (2 :
— 78 °C, 62% N
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ICHCl+ TMSCHoLT ——= LICH,Cl + TMSCHal g isopropenyl group is omitted.
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Discussion 2: 1,2-hydride shift

The author said that a spontaneous epimerization at C12 position was observed upon quenching the reaction with
aq. NH,CI, leading to the formation of 1-50.
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3: Reductive skeletal rearrangement cascade

1. 1-5 (2.0 equiv)
NaH (2.0 equiv), 0 °C;
n-BuLi (2.0 equiv), 0 °C;
1-4 (1.0 equiv), =78 °C, 67%
2. PhI(OCOCF3), (1.2 equiv)
K2003 (50 GQUiV)
HFIP, 0 °C, 53%

3. Sml, (7.0 equiv) Br
: CHO THF/t-BuOH (1/5), 0 °C;
SR H,O (excess), 70% HO
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the aromatic ring
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Discussion 3:
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Discussion 4:
OH [4+2] cyclization
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Discussion 3: Stereoselectivity
To consider the stereoselectivity of the addition reaction, it is important to analyze the most stable
conformation of the aldehyde involved in the reaction. The stability of the conformation can influence
the preferred orientation of the incoming nucleophile during the addition process.

1. The isopropenvl group

avoiding allylic strain

@ww

-4 '4 ster/c repulsion 1 4"
2. The aldeh de group  conformation A is unfavorable due to the steric repulsion highlighted in the above.
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conformation B: orbital interactions (TTc.c—1¢c.o)
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/\ NaO

1-62 (desired) OMe




conformation C:
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Discussion 4: [4+2] cyclization
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Appendix:
1. Another reaction mechanism of dearomatization

.9

g
1-63
CF3CO0 / CFy

OMe
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Ph” (0”0
2. [4+2] vs [5+2] (ref. He, C.; Hu, J.; Wu, Y.; Ding, H. J. Am. Chem. Soc. 2017, 139, 6098.)

As no computational chemistry analysis of the reaction mechanism has been conducted by Ding group, and clear
data on the reaction mechanism is unavailable, it was not possible to determine whether the reaction proceeds
through a [4+2] or [5+2] pathway.

However, based on the initial investigation conducted by Ding group (shown below), the results suggest that the
type of cycloaddition reaction is influenced by the oxidizing agent used. In other words, if the oxidizing agent
readily reacts with the aromatic ring and generates a cationic intermediate through the elimination, then the
reaction is more likely to proceed via the [4+2] pathway.

OH Q ]
MeQ oidant MeQ
2 g — = H + +
salvent, 0 °C 0
| o} | QOCH{CF3)2
12a 13a 14 15

Entry Oxidant Solvent Yield (%)"
13a 14 15

| Pb{OAc) CHCls 7 15 -

2 HI-1 CHCla 16 30 -

3 HI-1 toluene 25 7 -

4 HI-1 TFE 42 23 -

5 HI-1 HFIP 63 <5 15

6 HI-2 HFIP T8 <5 <5

7 HI-3 HFIP 20 <5 20

8 HI-4 HFIP a0 <5 26

9 HI-5 HFIP 4 <5 15

10 HI-6 HFIP 47 <5 25

11 HI-7 HFIP 34 <5 38

12 HI-8 HFIP 20 <5 52

13 HI-9 HFIP (i <5 <5

14 IBX HFIP 16 54 <3

“Unless stated otherwise, the reactions were performed with 12a (0.2 mmol) and oxidant (1.1
equiv) in solvent (4 mL) at 0 °C for 20 min. “Isolated yields. “Run at —40 °C for 10 min.
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If an oxidants can act as a "good" leaving group... (such as HI-6 and HI-7)

1-69 ®OMe

easy to generate?
F;C™ O

In this problem, [5+2] cycloaddition would occur from 1-68. CF3;CO, would eliminate during the cycloaddition like
"a leaving group of Sy2 reaction”



