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4 steps

EtNO2 (2.0 equiv)
Et3N (2.0 equiv), rt;
Ac2O (1.0 equiv), MeCN, rt;
DABCO (1.2 equiv)
O2 atmosphere (14.7 psi)
rt, 82%
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2. TosMIC (1.1 equiv)
t-BuOK (2.2 equiv), THF
−78 ºC;
MeOH (2.2 equiv), 60 ºC;
i-Bu2AlH (2.0 equiv)
−78 ºC, 62%
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NaH (2.0 equiv), 0 ºC;
n-BuLi (2.0 equiv), 0 ºC;
1-4 (1.0 equiv), −78 ºC, 67%

2. PhI(OCOCF3)2 (1.2 equiv)
K2CO3 (5.0 equiv)
HFIP, 0 ºC, 53%

3. SmI2 (7.0 equiv)
THF/t-BuOH (1/5), 0 ºC;
H2O (excess), rt, 70%CHO
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See also 150307_PS_Daiki_Kamakura (Total synthesis of retigeranic acid A by other groups)

1: One-pot synthesis of α,β-unsaturated ketone from aldehyde
EtNO2 (2.0 equiv)
Et3N (2.0 equiv), rt;
Ac2O (1.0 equiv), MeCN, rt;
DABCO (1.2 equiv)
O2 atmosphere (14.7 psi)
rt, 82%
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ODIscussion 1:
Modified Nef reaction
with molecular oxygen

DIscussion 1: Modified Nef reaction with molecular oxygen
1. Classical Nef reaction

The original procedure for the nitro to carbonyl transformation, as described by Nef, was essentially the hydrolysis
in strongly acidic conditions (typically pH < 1) of nitronate salt 1-12 produced by basic treatment of a nitroalkane
1-11.ref.1
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N
HO OH H2O
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O

The harsh conditions have encouraged the development of alternative methods that can be performed under
oxidative, reductive, or nearly neutral conditions.

The modified condition used in the problem was one of the 'mild' Nef reaction developed by the Hayashi group.ref.2
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2. Mechanistic insightsref.2

2-1. The origin of the keto-oxygen

C7H15 N18O2

DABCO, air

MeCN, rt, 20 h C7H15

16O

C7H15 NO2

DABCO, air

MeCN, rt, 20 h C7H15

O
82% control experiment

74%
The keto-oxygen was not
derived from NO2 group

C7H15 N16O2

DABCO, air

MeCN/H2
18O

rt, 20 h
C7H15

16O
71%

The keto-oxygen was not
derived from H2O.

C7H15 NO2

DABCO
Ar atomosphere

degassed MeCN
rt, 20 h

48%
Ketone 1-16 was not
generated without O2.
DABCO would assist the
isomerization.

C7H15 NO2

C7H15 NO2

DABCO
18O2 (1 atm)

MeCN, rt, 20 h C7H15

18O
70%

The keto-oxygen was
derived from O2.

90% incorporation of 18O.
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2. The involvement of radical species
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No epimerization was observed by the base.
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Oxidation of phosphonate carbanions with molecular oxygenref.3:
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In this reaction, a single-electron transfer (SET) process occurred.

-2-
A similar reacion mechanism can be considered in this problem.
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There is two possible pathway after SET process.
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3. Intramolecular vs. Intermolecular
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entry concentration [M] temperature [ºC] isolated yield [%]

1 0.25 23 82 <5
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3 0.005 −40 65 16
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Judging from the results, pathway b is more favorable.

The sulfoxide 1-35 was formed during the oxidative conversion of the nitro group into the ketone and the yield of
1-35 increased at lower concentrations and lower temperatures. In addition, sulfide 1-34 was not oxidized by
molecular oxygen. These results indicate that the sulfide was oxidized in an intramolecular manner, which would
support the involvement of a 1,1-dioxirane species 1-36 during the course of the reaction.
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2: Preparation of aldehyde

1-3

1. ICH2Cl (3.0 equiv),
LiBr (2.8 equiv),
TMSCH2Li (2.8 equiv)
THF, −78 ºC to rt;
sat. aq. NH4Cl, 65%

2. TosMIC (1.1 equiv)
t-BuOK (2.2 equiv), THF
−78 ºC;
MeOH (2.2 equiv), 60 ºC;
i-Bu2AlH (2.0 equiv)
−78 ºC, 62%
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allylic carbocation
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Discussion 2: 1,2-hydride shift
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The author said that a spontaneous epimerization at C12 position was observed upon quenching the reaction with
aq. NH4Cl, leading to the formation of 1-50.

3: Reductive skeletal rearrangement cascade
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K2CO3 (5.0 equiv)
HFIP, 0 ºC, 53%
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THF/t-BuOH (1/5), 0 ºC;
H2O (excess), 70%
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more favorable?
(See Apendix 1)
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Regioselective protonation
was assisted by a hydroxy group?
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Discussion 3: Stereoselectivity

H

CHO

H
avoiding allylic strain
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To consider the stereoselectivity of the addition reaction, it is important to analyze the most stable
conformation of the aldehyde involved in the reaction. The stability of the conformation can influence
the preferred orientation of the incoming nucleophile during the addition process.

1. The isopropenyl group

2. The aldehyde group

H

CHOH

steric repulsion

H
H

H

HH

H
CHO

H

HH

CHO
H

conformation B conformation Cconformation A

conformation A is unfavorable due to the steric repulsion highlighted in the above.
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Discussion 4: [4+2] cyclization
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Appendix:
1. Another reaction mechanism of dearomatization
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CF3
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2. [4+2] vs [5+2] (ref. He, C.; Hu, J.; Wu, Y.; Ding, H. J. Am. Chem. Soc. 2017, 139, 6098.)

As no computational chemistry analysis of the reaction mechanism has been conducted by Ding group, and clear
data on the reaction mechanism is unavailable, it was not possible to determine whether the reaction proceeds
through a [4+2] or [5+2] pathway.
However, based on the initial investigation conducted by Ding group (shown below), the results suggest that the
type of cycloaddition reaction is influenced by the oxidizing agent used. In other words, if the oxidizing agent
readily reacts with the aromatic ring and generates a cationic intermediate through the elimination, then the
reaction is more likely to proceed via the [4+2] pathway.
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If an oxidants can act as a "good" leaving group... (such as HI-6 and HI-7)
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[4+2]

In this problem, [5+2] cycloaddition would occur from 1-68. CF3CO2 would eliminate during the cycloaddition like
"a leaving group of SN2 reaction"


