Problem Session (3)

Please provide the structure of **2-2** and explain the reaction mechanisms and the selectivities

1.

Problem Session (3) - Answer-

Topic: site-selective acylation of glucose by organocatalysts

- 0. Introduction
- 0-1. glucose

- 5 hydroxy groups: hemiacetal (1-OH), 1°OH (6-OH) and trans-positioned 2°OH (2, 3, 4-OH)
- <u>Site-selective acylation of OH groups</u> is a major task for synthesis of glucose derivatives (e.g. tannins).
- 0-2. Site-selective acylation
- 0-2-1. Reactivity of OH groups
- (i) hemiacetal (1-OH) vs alcohol (2, 3, 4, 6-OH)

- Selective acylation at 1-OH is generally conducted by Mistunobu conditions (problem 2, step 1).
- Site-selectivity was explained by relatively high acidity of 1-OH.

Feng, S.; Bagia, C.; Mpourmpakis, G. *J. Phys. Chem. A* **2013**, *117*, 5211.

(ii) 1° OH (6-OH) vs 2° OH (2, 3, 4-OH)

				reag	jent
	reagent (1.0 eq)			AcCl	Ac ₂ O
HO6	DMAP (5 mol%)	R ¹ O	6-OAc : R ¹ = Ac, R ² -R ⁴ = H	62%	12%
HO 4 0	pyridine (1.0 eq)	$\rightarrow R^2 O \rightarrow O$	4-OAc : R ² = Ac, R ¹ , R ³ , R ⁴ = H	2%	13%
$HO_{3}^{12} OC_{8}H_{1}$		$R^{3}O \rightarrow OC_{8}H_{1}$	⁷ 3-OAc : R ³ = Ac, R ¹ , R ² , R ⁴ = H	9%	34%
но 0-4	0112012, 0 0	R⁺O 0-5	2-OAc : R ⁴ = Ac, R ¹ -R ³ = H	0%	0%
• •		k	Kattnig, E.; Albert, M. Org. Lett. 2	004 , 6	, 945.

Acetylation with Ac₂O and DMAP proceeds with inverted reactivity of 1°OH (6-OH) and 2°OH (3, 4-OH).

- It was proposed that intra- or intermolecular hydrogen bonding between OH groups affect the reactivity.
 0-2-2. Site-selective acylation by organocatalysts
- For highly site-selective acylation of 2, 3, 4, 6-OH, organocatalysts have been developed.

(i) 6-OH selective (vs 2, 3, 4-OH)

• Steric repulsion against **0-A**, which acts both acylation reagent and base, is dominant.

(ii) 4-OH selective (vs 2, 3, 6-OH)

 H-bonding between 6-OH of 0-4 and amide C=O of 2-A is important for catalyst-substrate recognition (problem 2, step 2)

(iii) 2-OH vs 3-OH

Interaction between the neighbor O-atom and the catalysts is important for the selectivity (problem 1).

Problem 1
 Benzotetramisole 1-A

- The direction of carbonyl C=O bond is restricted by chalcogen bonding.
 - (a) Yang, X.; Liu, P.; Houk, K. N.; Birman, V. B. Angew. Chem., Int. Ed. 2012, 51, 9638.
 - (b) Abbasov, M. E.; Hudson, B. M.; Tantillo, D. J.; Romo, D. J. Am. Chem. Soc. 2014, 136, 4492.
- Substrate can approach from the opposite site to Ph group.
- The interaction between positively charged catalyst and cation stabilizing group enhances the selectivity.

example 1. kinetic resolution by selective acylation of racemic alcohol

1-1. answer for problem 1

- It is assumed that cation-*n* interaction of OH (2-OH and 3-OH) is stronger than that of O-alkyl (4-O-acetal and 1-OMe) due to its electron richness derived from H-bonding with carboxylate.
- TS1-(C3)a (weaker cation-n) is more stable than TS1-(C3)b (stronger cation-n) due to the π-π interaction between Ph of benzylidene acetal and the catalyst.
- TS1-(C3)a and TS1-(C3)b is destabilized by steric repulsion between 1-OMe and the catalyst, yielding to suppression of 2-OH acylation.
- 1-1-2. Acylation by 1-B-(S)

- TS2-(C2)b is most stable, yielding the high selectivity of 2-OH acylation.
- TS2-(C3)b and TS2-(C2)a is destabilized by steric repulsion between 1-OMe and the catalyst.
- As is the case with acylation by 1-B-(R), TS2-(C3)a (weaker cation-n) is stabilized by π-π interaction but still less stable than TS2-(C2)a.
- Probably, the order of the factor for stabilizing the TS of acylation by 1-A is steric repulsion (1-OMe) > cation-*n* interaction ≥ π-π interaction

In fact, the site-selectivity was completely lost in the acylation of β -anomer **1-5**.

2. Problem 2

2-1. answer for step 1

discussion 1. Stereoselectivity

• The stereoselectivity was significantly affected by the stereochemistry of 2-OH.

2-2. answer for step 2 and 3

2-1. Transition states for the products

2-2. Effect of indole at the side chain of 2-A

HO HO HO HO OC ₈ H ₁₇	(<i>i</i> -PrCO) ₂ O (cat. (10 mol ⁶ collidine CHCl ₃ , 0 °C	1.1 eq) %) ►	R ¹ 0 R ² 0 R ³ 0 F 0-	L0 √L0 ₹ ⁴ 0	0C ₈ H ₁₇	$ \begin{array}{c} O \\ C_8H_{17}O \\ R \end{array} \\ \begin{array}{c} O \\ R \end{array} \\ \begin{array}{c} H \\ O \\ O \end{array} \\ \begin{array}{c} O \\ O \\ C_8 \end{array} \\ \begin{array}{c} H \\ O \\ O \end{array} \\ \begin{array}{c} O \\ C_8H_{17} \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} O \\ C_8H_{17} \end{array} \\ \begin{array}{c} O \\ C_8H_{17} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}
	cat.	6-0	4-0	3-0	2-0	N
	DMAP	20%	15%	26%	0%	
	2-A	0%	95%	2%	0%	2-C : R = 2-D : R =
	2-C	10%	41%	18%	0%	
	2-D	5%	48%	21%	0%	
Kawa	bata, T.; Mura	amatsu	, W.; Nisl	nio, T.; S	hibata, ⁻	T.; Schedel, H. <i>J. Am. Chem. Soc.</i> 2007 , <i>129</i> , 12890.

role of indole ○ H-donar (vs **2-C**) × CH-π interaction (vs **2-D**)

possible H-bonding between indole NH and O atom of **2-2** probably contributes to stabilization of TS.

Discussion 3. 2-OH selective acylation by 2-B

3-1. decreasing reactivity of 6-OH

- The reactivity of 6-OH is decreased by modification of 4-OH, indicating that 6-OH of 2-9 is less likely to form H-bond with amide carbonyl O atom the catalyst 2-B-(acyl).
- 3-2. Transition states for the products

3-3. Optimization of catalysts derived from 2-A

steric repulsion of indole and 2-O-acyl probably destabilizes the TS2-2c.

the slight difference of the angle.