Sml₂-Catalyzed Reaction by Procter's Group

Literature Seminar 2022/7/23 Takahiro Watanabe

Contents

1. Introduction

2. Intramolecular cyclization

Sml₂-catalysed cyclization cascades by radical relay

Huan-Ming Huang , Joseph J. W. McDouall and David J. Procter *

3. Intermolecular coupling

pubs.acs.org/JACS

Article

Sml₂-Catalyzed Intermolecular Coupling of Cyclopropyl Ketones and Alkynes: A Link between Ketone Conformation and Reactivity

Soumitra Agasti, Nicholas A. Beattie, Joseph J. W. McDouall, and David J. Procter*

Samarium Iodide (Sml₂)

Sm atom: one of lanthanoids

Benefit for organic synthesis:

- 1. strong redox potential
- 2. high oxophilicity
- 3. large ionic radius
- 4. high coordination number

	atomic No.	electron configuration		S(0)/	C 2+1	
		atom	Sm ²⁺	Sm ³⁺	Sm(0)/ Sm ²⁺	Sm ⁻ /
Sm	62	[Xe] 4f ⁶ 6s ²	[Xe] 4f ⁶	[Xe] 4f ⁵	–2.41 V	–1.55 V

Sml₂: One-electron reducing agent; firstly described in organic synthesis by Kagan in 1977: - preparation:

$$Sm + M \longrightarrow Sml_2 +$$

- Dehalogenation, deoxygenation, and reduction of conjugated olefins were reported. **Effects of additives:**

Additives change redox potential of Sml₂, and substrate scope has been expanded.

Entry	Reductant	$E_{1/2}$ [V]	Electrode	Solvent
1	SmI ₂ in THF	-0.98 ± 0.04	SCE	THF
2	$SmI_2(TPPA)_{10}$	-1.45 ± 0.09	SCE	THF
3	$SmI_2(DMPU)_{30}$	-1.61 ± 0.01	SCE	THF
4	$SmI_2(HMPA)_4$	-1.75 ± 0.06	SCE	THF
5	$SmI_2(LiBr)_n$	-1.55 ± 0.07	SCE	THF
6	$SmI_2(LiCl)_n$	-1.78 ± 0.10	SCE	THF
7	$SmI_2(H_2O)_n$	-1.3 ± 0.1	SCE	THF
8	Sm(HMDS) ₂	-1.5 ± 0.1	SCE	THF
9	SmI ₂ in CH ₃ CN	-0.84 ± 0.05	SCE	CH_3CN
10	SmI ₂ (DMPU) ₁₀ in CH ₃ CN	$\textbf{-1.48} \pm \textbf{0.06}$	SCE	CH ₃ CN

1) ランタノイドを利用する有機合成;日本化学会;季刊化学総説, 1998, No 37. 2) (a) Namy, J. L.; Girard, P.; Kagan, H. B. *Nouv. J. Chim.* **1977**, *1*, 5. (b) Girard, P.; Namy, J. L.; Kagan, H. B. *J. Am.* ₃ *Chem. Soc.* **1980**, *102*, 2693. 3) Szostak, M.; Spain, M.; Procter, D. J. *Chem. Soc. Rev.* **2013**, *42*, 9155.

Application of Sml₂ in Total Syntheses of taxol

¹⁾ Danishefsky et al. J. Am. Chem. Soc. 1996, 118, 2843. 2) Chida et al. Org. Lett. 2015, 17, 2570.

3) Li et al. J. Am. Chem. Soc. 2021, 143, 17862.

Reaction with Catalytic Amount of Sml₂

- Of the few reports of the use of catalytic Sml₂, all reactions of C-C bond formation require the use of superstoichiometric amounts of a metal coreductant to regenerate Sm(II).

- pinacol coupling 1)
$$\begin{array}{c} Sml_2 \ (10 \ mol\%) \\ TMSCI \ (1.5 \ eq) \\ Mg \ (8 \ eq) \\ \hline THF, \ rt; \\ then \ 1M \ aq. \ HCI \\ \end{array} \begin{array}{c} HO \\ Ph \\ \hline \end{array} \begin{array}{c} MgX_2 \\ (X=Clor \ I) \\ \hline \end{array} \begin{array}{c} 2Sm(III) \\ Sm(III)O \\ OSm(IIII) \\ \hline \end{array} \begin{array}{c} 2RCHO \\ Mg \ (S=Clor \ I) \\ \hline \end{array}$$

- intermolecular radical coupling ²⁾

(Ar = 2,4,6-trimethylphenyl)

2) Corey, E. J.; Zheng, G. Z. Tetrahedron Lett. 1997, 38, 2045.

¹⁾ Nomura, R.; Matsuno, T.; Endo, T. J. Am. Chem. Soc. 1996, 118, 11666.

Contents

1. Introduction

2. Intramolecular cyclization

Sml₂-catalysed cyclization cascades by radical relay

Huan-Ming Huang , Joseph J. W. McDouall and David J. Procter *

3. Intermolecular coupling

pubs.acs.org/JACS

Article

Sml₂-Catalyzed Intermolecular Coupling of Cyclopropyl Ketones and Alkynes: A Link between Ketone Conformation and Reactivity

Soumitra Agasti, Nicholas A. Beattie, Joseph J. W. McDouall, and David J. Procter*

Prof. David J. Procter

1995: PhD with Prof. Christopher Rayner @ the Univ. of Leeds

1995-1997: postdoc with Prof. Robert Holton @ Florida State Univ. in Tallahassee

1997-2004: Lecturer @ the Univ. of Glasgow in Scotland

2004: Senior lecturer @ the Univ. of Glasgow in Scotland

2004-2008: Reader @ the Univ. of Manchester

2008-: Professor @ the Univ. of Manchester

Research interest:

- 1. Sml₂-mediated radical cascades
- 2. Sulfonium-mediated C-H functionalization
- 3. Asymmetric copper-catalyzed multicomponent reactions

Recent His Study about Application of Sml₂

Cyclization cascades with Sml_2 - H_2O -LiBr system (*J. Am. Chem. Soc.* 2016, 138, 7770; *Angew. Chem. Int. Ed.* 2018, 57, 4995.):

$$\begin{array}{c} Sml_2 (3 \text{ eq}) \\ H_2O (100 \text{ eq}) \\ LiBr (20 \text{ eq}) \\ \hline \\ R' \end{array}$$

$$\begin{array}{c} R' \\ \hline \\ R' \end{array}$$

$$\begin{array}{c} R' \\ \hline \\ R' \end{array}$$

$$\begin{array}{c} A \\ Bu \\ \hline \\ C \\ C \end{array}$$

$$\begin{array}{c} A \\ C \\ C \end{array}$$

Enantioselective cyclization cascades (*Nature Chem.* 2017, 9, 1198.):

Radical Relay Cascade

Radical relay: a redox-neutral process in which radical character is regenerated and thus only a catalytic amount of radical-generating reagent is required

Key three steps:

- (1) radical formation: Radical character is generated by single-electron transfer (SET) or addition of a radical.
- (2) radical relocation: Radical character is propagated during a bond-forming/breaking sequence;
- (3) radical rebound: Radical character is recycled, typically by SET back to a metal catalyst or the expulsion of a radical that acts as a catalyst

To date, various metal catalysts have been used (e.g., Ti(III), Cu(I), Ru(II), Mn(III), Co(II), Rh(II), Fe(II), Ir(III), Ni(I)).

(a) Huang, H-M.; Garduño-Castro, M. H.; Morrill, C.; Procter, D. J. Chem. Soc. Rev., **2019**, 48, 4626. Gansäuer, A.; Rinker, B.; Pierobon, M.; Grimme, S.; Gerenkamp, M.; Mück-Lichtenfeld, C. Angew. Chem.lpt. Ed., **2003**, 42, 3687.

Optimization of Conditions

$$\frac{\text{Sml}_2 \text{ (cat)}}{\text{THF (0.025 M)}} \qquad \text{H} \qquad \text{(dr = 2.4:1)}$$

entry	temp. (°C)	Sml ₂ loading	yield	recovery
1	rt	300%	76%	-
2	rt	30%	70%	-
3	rt	10%	56%	31%
4	50 °C	10%	79%	9%
5	65 °C	10%	89%	-
6	65 °C	5%	88%	-

Substrate Scope (2)

70%, single diastereomer

90%, dr = 1:0.23

Mechanistic Studies (1)

- Confirmation of radical mechanisms:

various Lewis acids Sml₃, Sml₂/O₂ Sm(OTf)₃, La(OTf)₃ Yb(OTf)₃, Sc(OTf)₃ no reaction

observed with ESR and HRMS

Mechanistic Studies (2)

- Regeneration of Sml₂ plays a key role in the cascade:

H EtO₂C CO₂Et 10%, 68%, rcv.

18%

The catalytic cycle is prevented by trapping samarium enolates with TMSCI.

Chain-type process (shown in dashed curves in page 13) will be unlikely.

- Observation of blue color of reaction mixture still after reaction completion:

2 min

15 min

Fig. 6 | Computational studies. Computed density functional theory free-energy profile for the Sml₂-catalysed cyclization cascades (PBE/Def2-SVP level).

Contents

- 1. Introduction
- 2. Intramolecular cyclization

Sml₂-catalysed cyclization cascades by radical relay

Huan-Ming Huang , Joseph J. W. McDouall and David J. Procter *

3. Intermolecular coupling

pubs.acs.org/JACS

Article

Sml₂-Catalyzed Intermolecular Coupling of Cyclopropyl Ketones and Alkynes: A Link between Ketone Conformation and Reactivity

Soumitra Agasti, Nicholas A. Beattie, Joseph J. W. McDouall, and David J. Procter*

Screening of Catalytic Conditions

1b: $R^1 = Me$, $R^2 = H$

1c: $R^1 = R^2 = Me$

entry	ketone	temp. (°C)	Sml ₂ loading	conversion	yield of 3
1	1a	55	25 mol%	40%	35%*
2	1b	55	25 mol%	100%	99%
3	1b	rt	25 mol%	85%**	82%
4	1b	55	20 mol%	85%	79%
5	1b	55	15 mol%	63%	50%
6	1c	55	15 mol%	89%	87%

^{*}Byproduct 4 was also obtained (9%).**reaction time: 16 h

Substrate Scope (1)

OMe

69%

60% Ar

Ar S

para: 96% 89% meta: 75%

Ar'

59% (with 40 mol% of Sml₂)

Substrate Scope (2)

X = 1: 35%

n = 3: 73%

Agasti, S.; Beattie, N. A.; McDouall, J. J. W.; Procter, D. J. J. Am. Chem. Soc. 2021, 143, 3655.

21

0%

0%

Agasti, S.; Beattie, N. A.; McDouall, J. J. W.; Procter, D. J. J. Am. Chem. Soc. 2021, 143, 3655.

Probing the Importance of Ketyl Radical Stability

Coupling yield with phenylacetylene

Computational Studies

Summary