Problem session (1) -answer-

Topic: Total synthesis of (-)-Spinosyn A by Mingji Dai's group

1. Introduction

4 total synthesis reported so far:

- Evans's group (1993)¹, 31 steps in LLS
- Paquette's group (1998)², 35 steps in LLS
- Roush's group (2004)3, 23 steps in LLS
- Dai's group (2016)⁴, 15 steps in LLS -> this problem

Synthetic plan by Dai's group

Isoration:

in 1990, from Saccharopolyspora spinosa by Eli Lilly and company researchers

Use:

Insecticide (owing to its high toxicity to insects by affecting the neurotransmission)

Structural feature:

5,6,5,12-fused tetracyclic ring system

Reference:

- 1) W. C. Black; D. A. Evans, J. Am. Chem. Soc. 1993, 115, 4497-4513
- 2) Z. Gao; Z. Ni; G. F. Smith; L. A. Paquette. J. Am. Chem. Soc. 1998, 120, 2543-2552
- 3) D. J. Mergott, S. A. Frank, W. R. Roush. Proc. Natl. Acad. Sci. USA. 2004, 101, 11955-11959
- 4) Y. Bai; X. Shen; Y. Li; M. Dai. J. Am. Chem. Soc. 2016, 138, 10838-10841

2. Mechanisms for steps 1 and 2

2-1. Reaction mechanisms

2-2. Discussion 1: intramolecular Diels-Alder reaction using amine catalyst

3-1. Mechanisms for conditions A

3-2. Mechanisms for *conditions B*

3-3. Discussion 2: gold(I)-catalyzed cyclopropane formation

3-3-1. Acetyl migration: 5-exo vs 6-endo

Considering the electronic destabilization of transition state, the reaction rate is predicted to be 6-endo > 5-exo in general.

irreversible generation of carbenoid

3-3-2. Stereoselectivity of cyclopropane formation

Although the stereochemistry of the cyclopropane was not determined by the authers, it is proposed that **3** would be the observed structure, with the cyclopropane ring fused downwards.

3-4. Discussion 3: gold(I)-catalyzed reactions avoiding cycloisomerization

Three reactions occur in a single step;

- Z-selective α-iodoenone formation catalyzed by gold(I)
- formation of terminal C=C double bond via the elimination of selenium
- TBS deprotection (deprotected hydroxyl group is necessary in the next macrolactonization step)

Based on the observation that the existence of terminal alkene inhibited the formation of α -iodoenone and formed undesired cyclopropane via carbenoid generation (transformation 2 -> 3), iodization should have occured <u>before</u> the alkene formation.

Reaction mechanisms:

Z-isomer is formed selectively.

NO₂ AgNTf₂ is added as a scavenger of iodide ion and an activator of NIS.