Problem session (1) -answer- 2021/12/25 Hiromu Kakizawa
Topic: Total synthesis of (-)-Spinosyn A by Mingji Dai’s group

1. Introduction

O Isoration:
N in 1990, from Saccharopolyspora spinosa
by Eli Lilly and company researchers

“H Use:
Insecticide (owing to its high toxicity to insects
by affecting the neurotransmission)

) Structural feature:
(-)-Spinosyn A 5,6,5,12-fused tetracyclic ring system

4 total synthesis reported so far:

- Evans’s group (1993)", 31 steps in LLS

- Paquette’s group (1998)2, 35 steps in LLS

- Roush’s group (2004)3, 23 steps in LLS

- Dai’s group (2016)*, 15 steps in LLS -> this problem
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2. Mechanisms for steps 1 and 2

1. A (0.065 M in CF3CO,H, 0.20 eq),
MeCN/H,O (49/1, 0.080 M), -20 °C, 81%
2. B (1.2 eq), n-BuLi (2.3 eq)?, THF (0.050 M), -78 °C; OPMB  OAc
Ac,0 (1.5 eq), 0 °C; :
Ac,0 (30 eq), DMAP (0.10 eq), pyridine (0.11 M), rt, 71%
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@ Product of the previous step was added to pre-mixed B and n-BulLi.

Y. Bai; X. Shen; Y. Li; M. Dai. J. Am. Chem. Soc. 2016, 138, 10838-10841

2-1. Reaction mechanisms
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2-2. Discussion 1: intramolecular Diels-Alder reaction using amine catalyst
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3. Mechanisms for steps 3 and 4

3. m-CPBA (1.2 eq), THF (0.0077 M)
0°Ctort, 83 %
4. PhsPAUNTf, (0.050 eq), AgNTf, (0.10 eq), NIS (1.5 eq)
acetone/H,0 (800/1, 0.010 M), -15 °C, 28% (68% brsm) 3: C55H75806Si2
2 — (undesired, with 4 rings
conditions A including cyclopropane)

3. Ph3PAUNTf, (0.50 eq), AgNTTf, (3.0 eq), NIS (2.5 eq),
acetone/H,0 (800/1, 0.010 M), -15 °C, 58%

4. Pd(OAc); (0.10 eq), P(2-furyl); (0.20 eq), Et4NCI (1.0 eq)
4 A molecular sieve, toluene (0.012 M)

o 0,
CO atomosphere (3 atm), 90 °C, 43% OTBDPS

conditions B

4 (desired)
Y. Bai; X. Shen; Y. Li; M. Dai. J. Am. Chem. Soc. 2016, 138, 10838-10841

3-1. Mechanisms for conditions A
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3-2. Mechanisms for conditions B
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3-3. Discussion 2: gold(l)-catalyzed cyclopropane formation
3-3-1. Acetyl migration: 5-exo vs 6-endo
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Considering the electronic destabilization of transition state,
the reaction rate is predicted to be 6-endo > 5-exo in general.



----> no further reaction

Alkene coordinates to Au' intramolecularly.
Although NIS exists in the reaction system
as an electrophile, it cannot approach
o(Csp?-Au) for steric repulsion.

OTBDPS

irreversible generation of carbenoid

3-3-2. Stereoselectivity of cyclopropane formation
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Although the stereochemistry of the cyclopropane was not determined by the authers,
it is proposed that 3 would be the observed structure, with the cyclopropane ring fused downwards.



3-4. Discussion 3: gold(l)-catalyzed reactions avoiding cycloisomerization

Three reactions occur in a single step;

- Z-selective a-iodoenone formation catalyzed by gold(l)

- formation of terminal C=C double bond via the elimination of selenium

- TBS deprotection (deprotected hydroxyl group is necessary in the next macrolactonization step)

Based on the observation that the existence of terminal alkene inhibited the formation of a-iodoenone and formed

undesired cyclopropane via carbenoid generation (transformation 2 -> 3), iodization should have occured before the
alkene formation.

Reaction mechanisms:
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NO, AgNTf, is added as a scavenger of iodide ion and an activator of NIS.
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