Relativistic effects and Db's chemical character

2021.11.6. Shu Nakamura

Contents

1. Introduction

2. Previous works to estimate the chemical character of Db

3. Observing the chemical character of DbOCl₃ (2021)

Periodic table

1) https://www.mext.go.jp/stw/series.html

Relativistic effects: classical model

Classically...(Bohr's model)

Relativistic effects: example

What makes elements metal?

- high electrical conductivity
- high thermal conductivity
- ductility •

more strictly: the temperature dependence of the electrical conductivity When temperature rises...

metals: lower conductivity others: higher conductivity

characters of single substances

Metals easily become cation in compounds.

- Hensel, F.; Slocombe, D., R.; Edwards, P. P. Phil. Trans. R. Soc. A 373, 20140477. 1) 2)
 - シュライバー・アトキンス無機化学(上)

Valence –価数–

1) Parkin, G. J. Chem. Educ. **2006**, 83, 791.

Element 105: Dubnium

also called Hahnium (Ha) before 1997

belonging to group 5 [Rn] 5f¹⁴ 6d³ 7s² →+V oxidation state favored

no stable isotopes

Synthesized:

1968 (JINR, in USSR)

 $^{243}_{95}$ Am+ $^{22}_{10}$ Ne $\rightarrow ^{261}_{105}$ Db+5n

1970 (LBNL, in US)

 $^{249}_{98}Cf^{+}^{15}_{7}N \rightarrow ^{260}_{105}Db^{+}4n$

Vanadium steel is used in hard tools. Oxidation catalyst for preparation of sulfuric acid. Reduces blood sugar. Contained in some types of mushrooms and sea squirts.

Nb/Ti alloys superconducting magnet coils (linear motor vehicles and image diagnostic MRI devices). Ultra-thin glasses (Nb-containing glass with high refractive index). Heat-resistant alloys (aircraft engines).

92.91

41 Niobium

Dental implants material. Miniature large-capacity capacitor. Contrast agent for X-ray diagnosis. Miniature wave filter for mobile phones.

Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z. et al. *Pure & Appl. Chem.* **1993**, *85*, 1757.
Türler, A.; Pershina, V. *Chem. Rev.* **2013**, *113*, 1237.

Contents

1. Introduction

2. Previous works to estimate the chemical character of Db

3. Observing the chemical character of DbOCl₃ (2021)

Introduction

Prof. Tetsuya K. Sato

2003 Researcher @ Japan Atomic Energy Agency (JAEA) 2015-Assistant Principal Researcher @ JAEA 2017 Invited Researcher @ Helmholtz-Institut Mainz 2018 Invited Researcher @ Paul Schrerrer Institute 2019-Visiting Associate Professor@ Ibaraki University 2019-Visiting Associate Professor@ Tohoku University 2020-Visiting Scientist @ RIKEN

Research topic: Nuclear and radiochemistry Superheavy element chemistry

Tandem Accelerator of JAEA @Tokai-mura, Naka-gun, Ibaraki-ken - One of the largest electrostatic particle accelerators

①accelerating anion \rightarrow **②**stripping electron (making cation) \rightarrow **③**accelerating cation (same electric field; opposite direction)

1982 Operation started 1993 The superconducting booster was completed

- 1) https://asrc.jaea.go.jp/soshiki/gr/HENS-gr/member.html
- 2) https://researchmap.jp/tetsuyaks
- 3) https://ttandem.jaea.go.jp/index.html

Pershina's calculation (1) - introduction of relativistic effects -

Pershina's calculation (2) - calculation of relativistic effects -

1) Pershina, V.; Fricke, B. J. Chem. Phys. **1993**, 99, 9720.

Pershina's calculation (3) - covalency of DbCl₅ -

DT TT TT T TO

	ł	Energy level structure of some MOs	(q_i) for MCl ₅ .							
	0	$- VCl_5 NbCl_5 TaCl_5 HaCl_5 = DbCl_5$	Molecui	$R_{M-Cl_{ax}}(\text{\AA})$ le $R_{M-Cl_{eq}}(\text{\AA})$	Q	<i>q</i> 3	q_p	q _d	q _f	Δ <i>E</i> (eV)
Energy (eV)	-2	- (n-1)d+ +ns	VCl ₅ *	2.21	1.12	0.24	0.36	3.27		1.81
	-4	(n-1)d	NbCl,	2.18 2.338	0.93	0.20	0.22	3.65		2.70
	ł		TaCl ₅	2.241 2.369	0.95	0.35	0.33	3.37	13.99	3.10
	-6	ΔΕ	HaCl,	2.227 2.42	0.81	0.55	0.33	3.32	13.99	3.36
	-8		= DbCl HaCl,	5 2.28 2.45	0.80	0.58	0.34	3.29	13.99	3.25
		3p(Cl)	HaCl.	2.31	0.79	0.60	0.35	3.27	13.99	3.18
	-10	(n-1)d+ no	PaCl.	2.32	0.98	0.13	0.13	2.09	1.70	2.68
	-12	ns+3p(Cl)					0.15			2.00
(h)	ł	The charge on Db (≒Q) decreases.								
(0)	'			→Db-Cl bond is pr	edicte	d to be	less io	onic.		

To measure the chemical character of Db

A trace amount of Db compounds will be available.

 \rightarrow Only physicochemical parameters could be obtained.

a) Sublimation enthalpy: macroscopic parameter

Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y 1) Inorg. Chim. Acta 2019, 486, 361. 13

2) 永目諭一郎(編著)『超重元素化学の最前線』、日本放射化学会、2019.

Isothermal Gas-Chromatography (IGC) - Measurement of DbCl₅ -

Ordinal set-up for measurement of volatilities

b) contamination of non-volatile nuclear byproducts

c) deposition of aerosol particles if charged

- 1) Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Ito, Y.; Shirai, K.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y. J. Radioanaly. Nucl. Chem. 2019, 320, 633. 14
- 2) Türler, A.; Eichler, R.; Yakushev, A. Nucl. Phys. A 2015, 944, 640.

Model experiment (1)

- 1) Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y. Inorg. Chim. Acta **2019**, 486, 361.
- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Ito, Y.; Shirai, K.; Suzuki, H.; Tokoi, K.; Toyoshima, A₁₅ Tsukada, K.; Nagame, Y. *J. Radioanaly. Nucl. Chem.* **2019**, *320*, 633.

Section I: Reaction temperature

- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y. Inorg. Chim. Acta 2019, 486, 361.
- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Ito, Y.; Shirai, K.; Suzuki, H.; Tokoi, K.; Toyoshima, A₁₆ Tsukada, K.; Nagame, Y. *J. Radioanaly. Nucl. Chem.* **2019**, *320*, 633.

Section II: Gas-chromatography temperature

- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y Inorg. Chim. Acta 2019, 486, 361.
- 2) Türler, A.; Eichler, R.; Yakushev, A. Nucl. Phys. A 2015, 944, 640.

Conversion to ΔH_{subl}

A semi-empirical correlation between ΔH_{ads} and ΔH_{subl} can be obtained using similar chemical species (oxychlorides).

- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y. Inorg. Chim. Acta 2019, 486, 361.
- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Ito, Y.; Shirai, K.; Suzuki, H.; Tokoi, K.; Toyoshima, A₁₈ Tsukada, K.; Nagame, Y. *J. Radioanaly. Nucl. Chem.* **2019**, *320*, 633.

Optimization of correlation

$$\Delta H^0_{subl} \,\approx -(1.590 \pm 0.01) \Delta H_{ads} - (34.68 \pm 2.06) \,\, [\rm kJ/mol]$$

This would be useful to extrapolate ΔH_{subl} (DbOCl₃).

- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Suzuki, H.; Tokoi, K.; Toyoshima, A.; Tsukada, K.; Nagame, Y Inorg. Chim. Acta 2019, 486, 361.
- Chiera, N., M.; Sato, T., K.; Tomitsuka, T.; Asai, M.; Ito, Y.; Shirai, K.; Suzuki, H.; Tokoi, K.; Toyoshima, A₁ Tsukada, K.; Nagame, Y. *J. Radioanaly. Nucl. Chem.* **2019**, *320*, 633.

Contents

1. Introduction

2. Previous works to estimate the chemical character of Db

3. Observing the chemical character of DbOCl₃ (2021)

Experiment set-up

24 events (≒24 Db atoms) were detected.

Counted only coupled two α-particles detected within 3.5*5 seconds (to exclude background noises)

- Chiera, N., M.; Sato, T., K.; Eichler, R.; Tomitsuka, T.; Asai, M.; Adachi, S.; Dressler, R.; Hirose, K.; Inoue, H.; Ito, Y.; Kashihara, A.; Makii, H.; Nishio, K.; Sakama, M.; Shirai, K.; Suzuki, H.; Tokoi, K.; Tsukada, K.; Watanabe, E.; Nagame, Y. Angew. Chem. Int. Ed. 2021, 60, 17871.
- 2) Haba, H. EPJ Web Conf. 2016, 131, 07006.

Volatility of DbOCl₃

decreasing the ionic character

- 1) Chiera, N. et al. Angew. Chem. Int. Ed. 2021, 60, 17871.
- Eichler, B.; Türler, A.; Gäggeler, H. W. PSI Condensed Matter Research and Material Sciences Annual Report 1994/Annex FIIIA, 1995, 77

1) https://www.jaea.go.jp/02/press2021/p21070701/

Appendix

Spin-Orbit splitting (classical model)

On the electron's side, the nucleus orbits. \rightarrow A magnetic field is generated.

$$H_{\rm SO} = \frac{Ze^2}{m_e{}^2c^2r^2}\boldsymbol{sl}$$

l: orbital angular momentum (s, p, d, f...) *s*: spin angular momentum (\uparrow or \downarrow) $j \equiv l + s$

The energies depend on not only *I* but also *s*.

Pershina's calculation (1) - introduction of relativistic effects -

Dirac equation

$$\begin{split} \widehat{\boldsymbol{H}} \psi &= E \psi, \qquad \widehat{\boldsymbol{H}} = c \boldsymbol{\alpha} \widehat{\boldsymbol{p}} + \beta m c^2 + V(\boldsymbol{r}) \\ \begin{cases} c \sigma \widehat{\boldsymbol{p}} \varphi - (2mc^2 - V(r) + \epsilon) \overline{\varphi} = 0 \\ c \sigma \widehat{\boldsymbol{p}} \overline{\varphi} - (\epsilon - V(r)) \varphi = 0 \end{cases} \end{split}$$

in a spherical potential

$$\begin{split} \psi_{n\kappa m} &= \begin{bmatrix} \varphi \\ \overline{\varphi} \end{bmatrix} = \begin{bmatrix} \frac{P_{n\kappa}\left(r\right)}{r} \mathcal{Y}_{\kappa m}\left(\theta, \ \phi, \ s\right) \\ -i \frac{Q_{n\kappa}\left(r\right)}{r} \mathcal{Y}_{-\kappa m}\left(\theta, \ \phi, \ s\right) \end{bmatrix}, \kappa = \begin{cases} -l-1 \ (j=l+\frac{1}{2}) \\ l \ (j=l-\frac{1}{2}) \end{cases} \\ \mathcal{Y}_{\kappa m}\left(\theta, \ \phi, \ s\right) = \sum_{\nu} \langle s\nu lm - \nu | jm \rangle Y_{lm-\nu}(\theta, \phi) \xi_{\nu}(s) \end{cases} \qquad Y_{lm-\nu}(\theta, \phi): \text{ spherical harmonic function} \end{split}$$

$$\begin{cases} c\left(\frac{d}{dr} - \frac{\kappa}{r}\right)Q_i(r) + V(r)P_i(r) = \epsilon_i P_i(r) \\ c\left(-\frac{d}{dr} - \frac{\kappa}{r}\right)P_i(r) - 2c^2Q_i(r) + V(r)Q_i(r) = \epsilon_i Q_i(r) \end{cases}$$

Contamination of NbOCl₃

1) Türler, A.; Eichler, B.; Jost, D., T.; Piguet, D.; Gäggeler, H. W.; Gregorich, K., E.; Kadkhodayan, B.; Kreek, S., A.; Lee, D., M.; Mohar, M.; Sylwester, E.; Hoffman, D., C.; Hübener, S. *Radiochim. Acta* **1996**, *73*, 55.

Extrapolation of ΔH_{subl}

 Eichler, B.; Türler, A.; Gäggeler, H. W. PSI Condensed Matter Research and Material Sciences Annual Report 1994/Annex FIIIA, 1995, 77