Pyridone Ligand-Accelerated C-H Functionalization

Contents

1. Introduction

- 2. Ligand-accelerated non-directed C–H alkenylation (Yu, 2017)
- 3. Directed C–H hydroxylation with molecular oxygen (Yu, 2021, Main)

Introduciton of C-H Functionalization

1. Pd⁰-catalyzed cross-coupling between carbon electrophiles and carbon/heteroatom nucleophiles.

Pre-functionalized substrates, electrophiles and nucleophiles, are required, resulting in lengthy syntheses.

The selective activation of C-H bonds can avoid pre-functionalizations. However, the activation of thermodynamically stable C-H bonds is difficult.

Pioneering Work of C-H Functionalization

Fujiwara-Moritani reaction¹⁾²⁾

Reaction mechanism

Limitation

- 1. A large excess of arenes is required for Fujiwara-Moritani reaction.
- 2. Fujiwara-Moritani reaction, which involves electrophilic palladation step, is limited to electron-rich arenes.

1) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119. 2) Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc. 1969, 91, 7166.

Mechanisms of C-H Activation

1. Electrophilic palladation¹⁾

Pd^{II} coordinates to the π -system of arenes, and the resulting arenium species transfers a proton to acetate to generate arylpalladium intermediate. In electrophilic palladation, the efficacy of C-H activation is highly dependent on the electronic properties of arenes, with electron-rich substrates giving better reactivity.

Dating back to the early work of Fujiwara and Moritani, reactivity trends consistent with electrophilic palladation.

2. Concerted Metallation Deprotonation (CMD)²⁾

Anionic ligands on palladium, such as acetate or carbonate, assist C-H bond cleavage by acting as internal bases, particularly in the case of electron-deficient arenes.

¹⁾ Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky. A. K. J. Chem. Soc., Dalton Trans. 1985, 2629.

²⁾ Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754.

Ligand Effect on C-H Activation (1)

Mono N-protected amino acid ligands (MPAA) accelerate the reaction.

Ligand Effect on C-H Activation (2)

The conversion was determined by ¹H NMR of crude mixture.

- 1. In the absence of ligand, electron-rich substrate 1B gave a higher initial rate.
 - ightarrow C-H activation proceeds through an electrophilic palladation mechanism.
- 2. In the presence of Ac-IIe-OH, electron-poor substrate 1A gave a higher initial rate.
 - → C-H activation proceeds through an electrophilic palladation mechanism.

Proposed Catalytic Cycle

with ligand

Contents

- 1. Introduction
- 2. Ligand-accelerated non-directed C–H alkenylation (Yu, 2017)
- 3. Directed C–H hydroxylation with molecular oxygen (Yu, 2021, Main)

Prof. Jin-Quan Yu

1982-1987 (B.Sc.): East China Normal University

(Prof. L.-X. Dai and Prof. B.-Q. Wu)

1987-1988 : Shanghai Institute of Organic Chemistry

1988-1990 (M.Sc.) Guangzhou Institute of Chemistry (Prof. S.-D. Xiao)

1990-1994 : Teaching and research assistant

at Guangzhou Institute of Chemistry

1994-1999 (Ph.D.): University of Cambridge (Prof. Jonathan B. Spencer)

1999-2003 : Junior Research Fellow of St. John's College

at University of Cambridge

2001-2002 : Harvard University (Prof. E. J. Corey)

(postdoc)

2003-2004 : Royal Society Research Fellow

at University of Cambridge

2004-2007 : Assistant Professor at Brandeis University

2007-2010 : Associate Professor at The Scripps Research Institute

2010- : Professor at The Scripps Research Institute

Reseach Topic:

Discovery and rational design of new reactions using C-H activation

Background and Research Aim

1. Non-directed olefination (Sanford, 2012)¹⁾

Pd^{II}(OAc)₂ (5 mol%)
3,5-dichloropyridine (5 mol%)
PhCO₃t-Bu (1 eq)
AcOH, 100 °C, 6 h

(
$$\alpha: \beta = 1.0: 1.6$$
)

CI

(1.0 eq)

A large excess of arenes is required to achieve sufficient reactivity with palladium catalysts.

2. Directed olefination using N-protected amino acid ligands (Yu, 2010)²⁾

N-protected amino acid ligands enabled carboxylate-directed C-H olefination, allowing arenes to be used as the limiting reagent.

→ Further screening of ligands was conducted using 1,2-dichlorobenzene as a model substrate to realize non-directed C-H functionalization of arenes.

1) Kubota, A.; Emmert, M. H.; Sanford, M. S. *Org. Lett.* **2012**, *14*, 1760. 2) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. *J. Am. Chem. Soc.* **2010**, *132*, 14137. 3) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. *Nature* **2017**, *23*, 551.

Design of Ligands

1. Mono N-Protected Amino Acid ligand (MPAA)¹⁾²⁾

Cordination modes can be sterically controlled.

2. Pyridone ligand

Cordination modes can be electronically controlled.

1) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. *Science* **2010**, 327, 315. 2) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. *J. Am. Chem. Soc.* **2010**, 132, 14137. 3) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. *Nature* **2017**, 23, 551.

Screening of Ligands

The yield was determined by ¹H NMR using CH₂Br₂ as the internal standard.

R = Me : 19% (α/β = 1.0/1.0) R = F : 15% (α/β = 1.0/1.0) R = CF₃: 46% (α/β = 1.0/1.8)

62% $\alpha/\beta = 1.0/2.3$

OH 18% $\alpha/\beta = 1.0/2.0$

¹⁾ Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature **2017**, 23, 551. 13

Substrate Scope

The yield was determined by ^{1}H NMR using $CH_{2}Br_{2}$ as the internal standard.

H

64%

MeO

67%

(o/m/p = 1.0/12.2/13.8)

MeO

67%

(o/m/p = 1.8/1.0/3.7)

Me

67%

(o/m/p = 1.8/1.0/3.7)

$$(m/p = 3.3/1.0)$$

H

CI

H

60%

64%

¹⁾ Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. *Nature* **2017**, *23*, 551.

Mechanistic Study (1)

1) Kinetic isotope effect (KIE)

D/H H/D
$$CO_2$$
Et CO_2 ET CO

The kinetic-isotope-effect experiments ($k_{\rm H}/k_{\rm D}$ = 2.9) using benzene as a model substrate with ethyl acrylate indicate that the C-H bond cleavage is the late-limiting step.

2) DFT calculation of TS strucctures

Calculation was conducted at the M06/SDD,6-311+G(d,p)(SMD)//B3LYP/LANL2DZ,6-31-G(d) level of theory.

¹⁾ Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. *Nature* **2017**, *23*, 551.

Mechanistic Study (2)

2) With pyridone ligand

With pyridone ligands, π - π stacking interactions stabilize dimeric Pd species. Pyridone ligands promote not only CMD process, but also generation of reactive monomeric Pd

6.1

species.

 (NO_2, NO_2)

14.4

¹⁾ Mandal, N.; Datta, A. J. Org. Chem. 2020, 85, 13228.

Contents

- 1. Introduction
- 2. Ligand-accelerated non-directed C–H alkenylation (Yu, 2017)
- 3. Directed C–H hydroxylation with molecular oxygen (Yu, 2021, Main)

C-H Oxidation with Stoichiometric Oxidant

1. with PhI(OAc)₂ (Sanford, 2004)¹⁾

2. with t-BuOOAc (Yu, 2005)²⁾

1) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. 2) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J.-Q. *Angew. Chem. Int. Ed.* **2005**, *44*, 7420.

Successful C-H Hydroxylation with O₂

R = Me : 78%

R = OMe: 73%

X = F : 82%

X = CI: 78%

R = Me: 82%

R = NHAc: 52%

50% (1 atm O₂)

86% (5 atm O₂)

76%

62%

51% (1 atm O₂)

63% (5 atm O₂)

54% (1 atm O₂)

91% (5 atm O₂)

Limmitation

- 1. Electron-deficient arenes have low reactivity to C-H hydroxylation.
- 2. Heteroaryl acids show no reactivity under the reaction conditions.

Oxidation of Pd(II) with O_2 (Mirica's group)

Proposed Mechanism

Effect of Bidentate Ligands on Oxidaiton of Pt(II)

$$\begin{array}{c}
O_2 \text{ (1 atm)} \\
\text{MeCN/MeOH (1/25)} \\
\hline
N Pt^{|V} Me \\
N OMe
\end{array}$$

$$\begin{array}{c}
O_2 \text{ (1 atm)} \\
\text{MeCN/MeOH (1/25)} \\
\hline
ON Pt^{|V} Me \\
OMe
\end{array}$$

$$\begin{array}{c}
O_1 \\
OH \\
OMe
\end{array}$$

$$\begin{array}{c}
OH \\
OH \\
OMe
\end{array}$$

relative rate constant of (diimine)PtMe₂ with O₂ (1 atm).

R
$$R = t$$
-Bu: 6.0
 $R = CF_3 : 4.0$
 i -Pr
 i -Pr

The rate of oxidation of Pt(II) is influenced by electronic and steric characters of ligands.

Working Hypothesis

$$\begin{array}{c}
O_2 \\
\hline
2. oxidation of Pd^{II}
\end{array}$$

heteroarene acids (incoompatible with (previous conditions¹⁾)

Problem

- 1. Slow C-H activation with electron-deficient arenes
 - → use of pyridone ligand²⁾
- 2. Slow oxidation of Pd^{II}
 - → use of electron-donating bidentate ligand³⁾

pyridine-pyridone ligand (n = 0, 1)

1) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. *Nature* **2017**, *23*, 551. 2) Rostovtsev, V. V.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. *Inorg. Chem.* **2002**, *41*, 3608. 3) Li, Z.; Wang, Z.; Chekshin, N.; Qian, S.; Qiao, J. X.; Cheng, P. T.; Yeung, K.-S.; Ewing, W. R.; Yu, J.-Q. *Science* **2021**, *372*, 1452.

Screening of Ligands

The yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard.

a) 20 mol% of ligand was used.

Substrate Scope (1)

Pd^{II}(OAc)₂ (10 moI%) L1 (10 moI%) 1,4-benzoquinone (1.5 eq) KOAc (2.0 eq), O₂ (1 atm) DMF, 110 °C, 24 h

OH

R = H : 72%

 $R = CF_3 : 76\%$

R = *t*-Bu: 52%

R = CI : 67%

R = Me : 75%

 $R = CF_3 : 81\%$

R = Me : 54%

R = OMe: 61%

 CO_2H R = CF_3 : 70%

X = NH: 76%

X = O : 57%

X = S : 70%

Substrate Scope (2)

$$R = \begin{bmatrix} CO_2H \\ H \\ X \\ (1.0 \text{ eq}) \end{bmatrix}$$

Pd^{II}(OAc)₂ (10 moI%) L1 (10 moI%) 1,4-benzoquinone (1.5 eq) KOAc (2.0 eq), O₂ (1 atm) DMF, 110 °C, 24 h

Mechanistic Study

1) Deuterium-labelling experiment

w/o ligand : 0% D incorporation 10 mol% L1: 42% D incorporation

2) Kinetic isotope effect (KIE) experiment

Pd^{II}(OAc)₂ (10 mol%)
L1 (10 mol%)
1,4-benzoquinone (1.5 eq)
KOAc (2.0 eq), O₂ (1 atm)
DMF, 110 °C, 24 h

$$k_{\rm H}/k_{\rm D}$$
 = 1.24 ± 0.08 D/H OH
(1.0 eq)

DFT Calculation (1)

1) Binding modes of bidentate ligand

Calculations were conducted at the SMD_{DMF} -M06/6-311++G(d,p)/SDD(Pd)//SMD_{DMF}-B3LYP-D3(BJ)/6-31+G(d,p)/SDD(Pd) level of theory.

DFT Calculation (2)

2) Energy profiles on the C-H cleavage step

Calculations were conducted at the SMD_{DMF}-M06/6-311++G(d,p)/SDD(Pd)//SMD_{DMF}-B3LYP-D3(BJ)/6-31+G(d,p)/SDD(Pd) level of theory.

¹⁾ Li, Z.; Wang, Z.; Chekshin, N.; Qian, S.; Qiao, J. X.; Cheng, P. T.; Yeung, K.-S.; Ewing, W. R.; Yu, J.-Q. *Science* **2021**, *372*, 1452.

Proposed Mechanism

Summary

1. Non-directed C-H alkenylation (Yu, 2017)¹⁾

2. Directed C-H hydroxylation with molecular oxygen (Yu, 2021)²⁾

¹⁾ Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. *Nature* **2017**, *23*, 551. 2) Li, Z.; Wang, Z.; Chekshin, N.; Qian, S.; Qiao, J. X.; Cheng, P. T.; Yeung, K.-S.; Ewing, W. R.; Yu, J.-Q. *Science* **2021**, *372*, 1452.