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1.1 Storage Density

Examples
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1.2.1 Major Steps of Digital Storage
in DNA (1) C
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DNA data storage involves five major steps:

(1) Write (encoding): A computer algorithm maps strings of bits into DNA
sequence. The resulting DNA sequences are then synthesized.

(2) Store: The synthesized DNA can be cloned and stored commonly in
vitro, or within a biological cell (in vivo).

Edited from Ceze, L.; Nivala, J.; Strauss, K. Nature Rev. Genet. 2019, 20, 456—466.



1.2.2 Major Steps of Digital Storage
in DNA (2)
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(3) Retrieve: DNA data requested to be read can be selectively retrieved
from DNA pool in a process called random access (PCR enrichment).

(4) Read: Various sequencing machines are used to extract DNA sequence.
(5) Decode: Sequence detected are decoded back to binary data.

Edited from Ceze, L.; Nivala, J.; Strauss, K. Nature Rev. Genet. 2019, 20, 456—466.



1.3 Development of DNA storage
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Most early work on DNA storage involved in vivo cloning. Recently, in vitro
storage is the mainstream for the development of DNA synthesis.

Ceze, L.; Nivala, J.; Strauss, K. Nature Rev. Genet. 2019, 20, 456—466.
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2. In vitro data storage
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2.1 DNA Data Storage Workflow
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The workflow basically corresponds to the major steps of digital storage in
DNA. To achieve random access and low error rate, primer design and

redundancy were applied, respectively.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.
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2.2 Primer Library Design

Generate random 20-mer

based on: Filter
1. GC-content secondary :
Filter
2. sequence structure and .
: : similarity
complementarity melting
3. long homopolymers temperature
4. Hamming distance
19,840 9,869 5,625
sequences sequences sequences

Various criteria were adopted to give out unique primer sequences that
meet the requirement of random access.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.



2.3 Primer Library validation
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48 out of 3,240 sequences were randomly selected for amplification.

The candidate primers were validated experimentally.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.
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2.4 Encoding of DNA Storage

Encoding
Binary : DNA sequences
(110101...) PIME, (ATCTGC. . .)
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The binary data are partitioned into small bit sequences (payload) with
sequence numbers (addressing information, adr). Redundancy is added
for error correction. After conversion to DNA sequence, primer target
sites are added for data selectivity.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.
Ceze, L.; Nivala, J.; Strauss, K. Nature Rev. Genet. 2019, 20, 456—466. 11



2.5 Decoding of DNA Storage

Decoding
ATAGTA... .c» 00~
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The decoding process starts by clustering reads based on similarity.
Then a consensus is to be found between the sequences in each cluster
to reconstruct the original sequences. Finally, the sequence read are
decoded back to digital data.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.
Ceze, L.; Nivala, J.; Strauss, K. Nature Rev. Genet. 2019, 20, 456—466. 12



2.6.1 Error Analysis (1)

DNA pool
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A file of interest is accessed via PCR and sequencing from a stored DNA

pool. Error rates of insertion, deletion, and substitution were analyzed.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.
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2.6.2 Error Analysis (2)

Insertion Deletion Substitution % Total

rate rate rate reads

A 11 x 107 41 %107 75 x 10°% 24.6
C 9.1 x10™° 3.6 x 107 9.8 x 107 25 .1
G 25x%x107* 38 x107* 13x10~° 251
T 8.4 x107° B %10 15x107° 25.2
Total | 5.4 x107* 15 x 10~ 45 %10~ 100.0

Total error rate

0.008 t

0.006 ¢t

0.004 ¢

0.002 ¢

0.000

NAN

NCN NGN
3-mers

NTN

Insertion and substitution errors are biased toward certain base types.
Almost half of the insertions are associated with type G, and about a third of
the substitution are associated with type T. Error rates concerning 3-mers
were also analyzed, showing type G, T with higher rates.

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.




2.7 Short Summary

In vitro data storage in DNA

0101011011100
1101010101101
0100110101010
1010100101100

1. High density
(theoretically 455 EB/g)

2. Error tolerance

(due to redundancy, error-
correcting algorithm)

in vitro

in vivo data storage in DNA
3. Long-term durability

Digital information is stored in cells
indirectly by inducing synthesized DNA
segment into the genome.

2. Low write/ read speed 0101011011100
1101010101101
(Limited by the speed of DNA ( 2010100101900

1. High cost

synthesis and sequencing)

in vivo

Organick, L., Ang, S., Chen, YJ. et al. Nat. Biotech. 2018, 36, 242.
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3. Direct in vivo data storage (main paper)

ARTICLES nature
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Harris H. Wang ©'4&
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3.1 Concept of Direct in vivo Storage

in vitro storage in DNA
(base pair -> information)

direct in vivo storage in DNA
(genome sequence -> information)

I
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Due to the difficulty of editing every single oligonucleotide in the genome
of one cell, the concept of direct in vivo storage in DNA mimics an audio
tape in which the induced spacer works as signals. This concept
achieved direct induction of information but resulted much lower density.

Sheth, R.; Yim, S.; Wu, F.; Wang, H. Science 2017, 358, 1457.
18



3.2 From Digital to Biological Data

Biological data

Digital data

Data: e.g. ‘hello world!’
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Digital data (3-bit binary data) can be encoded into bacteria genome in
an 'audio tape’ manner.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.
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3.3 Data Recording by Electrical Stimulation
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The concept of DRIVES (Data Recording In Vivo by Electrical Stimulation)
involves the gene expression of trigger DNA (pTrig) regulated through electrical
stimuli.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.
20



3.4 Copy Number of pTrig
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Over 400-fold increase of pTrig copy number was observed in the

presence of electrical signal (left).
The significant difference in the proportion was also demonstrated (right).

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.



3.5 3-bit Binary Profile
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Cells were subjected to electrical signals over three sequential rounds in
order to constitute all eight possible 3-bit binary profiles marked by the

copy numbers of pTrig.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.
22



3.6 Frequency Analysis of Array Types
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Sequencing of the genome DNA alone is also not appliable to tell the
original electrical signals. For a given array length (L1, L2, and L3), a
frequency distribution of reference spacers (R) and trigger spacers (T)
was analyzed. The input signals resulted different frequency distribution
upon the array types.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.
23



3.7 Array-Type Frequency Profile
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Whether these array-type frequencies could differentiate between
different input signals was tested. The authors demonstrated that digital
data can be stored directly through electrical stimulation and the
resulting frequency profiles can be used to recover the stored data.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.
24



3.8 DRIVES Set-up
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A multiplexing strategy to write binary data across multiple barcoded cell
populations in parallel was devised.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.



3.9 6-bit Character Table
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Characters are encoded into 2 sets of 3-bit binary data according to the
character table. One character is thus split into two barcoded cell populations.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.
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3.10 Decoding of Stored Character
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In experiment, two sets of cells are sequenced and analyzed by frequency
distribution which in return output the original signals. Then, the signals were
decoded to the character “h”. This result successfully proved the direct in vivo
storage method by electrical stimulation.

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246. 27



3.11 Summary

Binary encoded data

write
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The 'DRIVES’ (data recording in vivo by electrical stimulation) first
managed to encode digital data directly into the living cells without the
need to synthesize DNA in vitro.

1. High cost

2. Hard to write/ read

3. Much lower density

1. Protection from degradation

2. New direction for DNA storage

Yim, S.; McBee, R.; Song, A.; Huang, Y.; Sheth, R.; Wang, H. Nat. Chem. Biol. 2021, 17, 246.




