Inhibitors of Drug Resistant EGFR Mutants

Literature Seminar D2 Miura Kensuke

Outline

- Introduction of EGFR
- EGFR in Cancer
- Main topic

nature chemical biology

ARTICLES https://doi.org/10.1038/s41589-020-0484-2

Check for updates

A drug discovery platform to identify compounds that inhibit EGFR triple mutants

Punit Saraon^{1,23}, Jamie Snider^{1,23}, Yannis Kalaidzidis⁰², Leanne E. Wybenga-Groot³, Konstantin Weiss¹, Ankit Rai⁰⁴, Nikolina Radulovich⁵, Luka Drecun^{1,6}, Nika Vučković¹, Adriana Vučetić¹, Victoria Wong¹, Brigitte Thériault⁷, Nhu-An Pham⁵, Jin H. Park^{8,22}, Alessandro Datti^{9,10}, Jenny Wang⁹, Shivanthy Pathmanathan^{1,6}, Farzaneh Aboualizadeh¹, Anna Lyakisheva¹, Zhong Yao¹, Yuhui Wang⁵, Babu Joseph⁷, Ahmed Aman⁷, Michael F. Moran^{11,12}, Michael Prakesch⁷, Gennady Poda^{7,13}, Richard Marcellus⁷, David Uehling⁷, Miroslav Samaržija¹⁴, Marko Jakopović¹⁴, Ming-Sound Tsao^{5,15,16}, Frances A. Shepherd^{17,18}, Adrian Sacher⁵, Natasha Leighl⁵, Anna Akhmanova[®]⁴, Rima Al-awar^{7,19}, Marino Zerial[®]² and Igor Stagljar[®]^{1,6,20,21}

Outline

- Introduction of EGFR
- EGFR in Cancer
- Main topic

nature chemical biology

ARTICLES https://doi.org/10.1038/s41589-020-0484-2

Check for updates

A drug discovery platform to identify compounds that inhibit EGFR triple mutants

Punit Saraon^{1,23}, Jamie Snider^{1,23}, Yannis Kalaidzidis², Leanne E. Wybenga-Groot³, Konstantin Weiss¹, Ankit Rai⁴, Nikolina Radulovich⁵, Luka Drecun^{1,6}, Nika Vučković¹, Adriana Vučetić¹, Victoria Wong¹, Brigitte Thériault⁷, Nhu-An Pham⁵, Jin H. Park^{8,22}, Alessandro Datti^{9,10}, Jenny Wang⁹, Shivanthy Pathmanathan^{1,6}, Farzaneh Aboualizadeh¹, Anna Lyakisheva¹, Zhong Yao¹, Yuhui Wang⁵, Babu Joseph⁷, Ahmed Aman⁷, Michael F. Moran^{11,12}, Michael Prakesch⁷, Gennady Poda^{7,13}, Richard Marcellus⁷, David Uehling⁷, Miroslav Samaržija¹⁴, Marko Jakopović¹⁴, Ming-Sound Tsao^{5,15,16}, Frances A. Shepherd^{17,18}, Adrian Sacher⁵, Natasha Leighl⁵, Anna Akhmanova⁶, Rima Al-awar^{7,19}, Marino Zerial⁶² and Igor Stagljar⁶^{1,6,20,21}

Tyrosine Kinase

Tyrosine Kinase: regulator of cell signaling

- <u>Receptor tyrosine kinase: cell membrane</u>
- Non-receptor tyrosine kinase: cytosol

1) Lemmon, A. M.; Schlessinger, J. Cell, 2010, 141, 1117

2) Volinsky, N.; Kholodenko, B. N. Cold Spring Harb. Perspect. Biol. 2013, 5, a009043

- 1) Lemmon, A. M.; Schlessinger, J. Cell, 2010, 141, 1117
- 2) Volinsky, N.; Kholodenko, B. N. Cold Spring Harb. Perspect. Biol. 2013, 5, a009043

ErbB Family

1) Yarden, Y.; Siwkowski, X. M. Nat. Rev. Mol. Cell Biol, 2001, 2, 127

Mechanism of Activation and Regulation of EGFR

1) Yarden, Y.; Siwkowski, X. M. Nat. Rev. Mol. Cell Biol, 2001, 2, 127

Cell Signal from EGFR

1) Yarden, Y.; Siwkowski, X. M. Nat. Rev. Mol. Cell Biol, 2001, 2, 127

EGFR Overexpression and Mutations in Cancer

Molecule	Nature of dysregulation	Type of cancer	Notes	
Receptors				
ErbB1	Overexpression	Head and neck, breast, bladder, prostate, kidney, non- small-cell lung cancer	Significant indicator for recurrence in operable breast tumours; associated with shorter disease- free and overall survival in advanced breast cancer; may serve as a prognostic marker for bladder, prostate, and non-small-cell lung cancers	
	Overexpression	Glioma	Amplification occurs in 40% of gliomas; overexpression correlates with higher grade and reduced survival	
	Mutation	Glioma, lung, ovary, breast	Deletion of part of the extracellular domain yields a constitutively active receptor	
ErbB2	Overexpression	Breast, lung pancreas, colon oesophagus, endometrium, cervix	Overexpressed owing to gene amplification in 15–30% of invasive invasive ductal breast cancers Overexpression correlates with tumour size, spread of the tumour to lymph nodes, high grade, high percentage of S-phase cells, aneuploidy and lack of steroid hormone receptors	
ErbB3	Expression	Breast, colon gastric, prostate, other carcinomas	Co-expression of ErbB2 with ErbB1 or ErbB3 in breast cancer improves predicting power	
	Overexpression	Oral squamous cell cancer	Overexpression correlates with lymph node involvement and patient survival	
ErbB4	Reduced expression	Breast, prostate	Correlates with a differentiated phenotype	
	Expression	Childhood medullo- blastoma	Co-expression with ErbB2 has a prognostic value	

Cell Signal in Cancer

1) Yarden, Y.; Siwkowski, X. M. Nat. Rev. Mol. Cell Biol, 2001, 2, 127

Outline

- Introduction of EGFR
- EGFR in Cancer

Main topic

nature chemical biology ARTICLES https://doi.org/10.1038/s41589-020-0484-2

Check for updates

A drug discovery platform to identify compounds that inhibit EGFR triple mutants

Punit Saraon^{1,23}, Jamie Snider^{1,23}, Yannis Kalaidzidis¹, Leanne E. Wybenga-Groot³, Konstantin Weiss¹, Ankit Rai⁴, Nikolina Radulovich⁵, Luka Drecun^{1,6}, Nika Vučković¹, Adriana Vučetić¹, Victoria Wong¹, Brigitte Thériault⁷, Nhu-An Pham⁵, Jin H. Park^{8,22}, Alessandro Datti^{9,10}, Jenny Wang⁹, Shivanthy Pathmanathan^{1,6}, Farzaneh Aboualizadeh¹, Anna Lyakisheva¹, Zhong Yao¹, Yuhui Wang⁵, Babu Joseph⁷, Ahmed Aman⁷, Michael F. Moran^{11,12}, Michael Prakesch⁷, Gennady Poda^{7,13}, Richard Marcellus⁷, David Uehling⁷, Miroslav Samaržija¹⁴, Marko Jakopović¹⁴, Ming-Sound Tsao^{5,15,16}, Frances A. Shepherd^{17,18}, Adrian Sacher⁵, Natasha Leighl⁵, Anna Akhmanova⁶, Rima Al-awar^{7,19}, Marino Zerial⁶² and Igor Stagljar⁶^{1,6,20,21}

EGFR Mutations in Lung Cancer

1) Sequist, L. V. et. al. Sci. Transl. Med. 2011, 3, 75ra26

Inhibitor of L858/del19 Mutant: Gefetinib

close-up view of the EGFR tyrosine kinase domain

Gefitinib inhibit catalysis by <u>occupying the ATP-binding site</u>, where they form hydrogen bonds with methionine (M769) and cycteine (C751)

T790M Mutant

The frequency of observed drug resistance

Kinase	K _d [nM]	K _d /K _{m[ATP]} [× 10 ⁻³]	
WT	35.3 ± 0.4	6.8	
T790M	4.6 ± 0.1	0.78	
L858R	2.4 ± 0.1	0.016	
L858R/T790M	10.9 ± 0.6	1.3	

The T790M mutation in EGFR causes resistance to gefinitib

steric interference with binding of TKIs by substitution of this residue in EGFR with a bulky methionine

Gofitinih

Kobayashi, S. et al. N Engl J Med. 2005, 352, 786-792. 1) 2)

Osimertinib

1) Zhou, W.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D.; Capelletti, M.; Cortot, B. A.; Chirieac, L.; Iacob, E. R.; Padera, R.; Engen, R. J.; Wong, K. K.; Eck, J. M.; Gray, S. N.; Jänne, A. P. *Nature.* **2009**, *462*, 1070.

Triple Mutant EGFR

acquired EGFR C797S mutation mediates resistance to osimertinib

the therapies that are able to overcome the resistance is needed

1) Thress, S. K.; Paweletz, P. C.; Felip, C. E.; Cho, C. B.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, E. S.; Cantarini, Barrett, C. J.; Jänne, A. P.; Oxnard, R5G. *Nat. Med.* **2015**, *21*, 560.

In Vitro Screening for EGFR inhibitor

In vitro kinase assay (purified proteins used) substrate
kinase
ATP
ADP
O

Limitations:

 Inability to detect compounds that affect RTK function independent of direct inhibition of kinase activity

- $\boldsymbol{\cdot}$ Inability to assess cellular toxicity and permeability of compounds
- assay evaluating cell-viability (reproducing a natural environment) Limitations:
- detection of compounds affecting cell growth/metabolism

To overcome these limitations <u>mammalian membrane two-hybrid</u> <u>assay (MaMTH)</u> was used.

Outline

- Introduction of EGFR
- EGFR in Cancer
- Main topic

nature chemical biology

ARTICLES https://doi.org/10.1038/s41589-020-0484-2

Check for updates

A drug discovery platform to identify compounds that inhibit EGFR triple mutants

Punit Saraon^{1,23}, Jamie Snider^{1,23}, Yannis Kalaidzidis⁰², Leanne E. Wybenga-Groot³, Konstantin Weiss¹, Ankit Rai⁴, Nikolina Radulovich⁵, Luka Drecun^{1,6}, Nika Vučković¹, Adriana Vučetić¹, Victoria Wong¹, Brigitte Thériault⁷, Nhu-An Pham⁵, Jin H. Park^{8,22}, Alessandro Datti^{9,10}, Jenny Wang⁹, Shivanthy Pathmanathan^{1,6}, Farzaneh Aboualizadeh¹, Anna Lyakisheva¹, Zhong Yao¹, Yuhui Wang⁵, Babu Joseph⁷, Ahmed Aman⁷, Michael F. Moran^{11,12}, Michael Prakesch⁷, Gennady Poda^{7,13}, Richard Marcellus⁷, David Uehling⁷, Miroslav Samaržija¹⁴, Marko Jakopović¹⁴, Ming-Sound Tsao^{5,15,16}, Frances A. Shepherd^{17,18}, Adrian Sacher⁵, Natasha Leighl⁵, Anna Akhmanova⁶, Rima Al-awar^{7,19}, Marino Zerial⁶² and Igor Stagljar⁶^{1,6,20,21}

Igor Stagljar

1990: B. S. University of Zagreb 1995: Ph. D. ETH Zurich (Prof. Markus Aebi) 1995-1999: P. D. University of Zurich (Prof. Walter Schaffner and Prof Ulrich Huebscher)

1999-2002:Visiting Scientist. University of Washington (Prof. Stan Fields) 2002-2005:Assistant Professor. University of

Zurich

2005-2010: Associate Professor. University of Tronto

2010-: Professor. University of Tronto

Research topics: Proteomics, Cell Signaling, Membrane Transport

Mammalian membrane two-hybrid (MaMTH) is derived from

- yeast two-hybrid assay
- split-ubiquitin assay

Traditional Two-hybrid Assay

Yeast two-hybrid screening methods:

Effective means for the detection of protein-protein interactions.

Limitation:

- The interaction occurring in the cell nucleus
- Inability to evaluate proteins that have transcriptional activity

Ubiquitin

1) Verena, T.; Hans, M. M.; Jayanta, M.; Hermann, S.; Werner, S.; Stephan, J. M.; *Front. Cell. Neurosci.* **2012**, *6*, 23.

Split-Ubiquitin Assay

1) Verena, T.; Hans, M. M.; Jayanta, M.; Hermann, S.; Werner, S.; Stephan, J. M.; *Front. Cell. Neurosci.* **2012**, *6*, 23.

Mammalian-Membrane Two-Hybrid Assay (MaMTH)

Usaj, M. M.; Snider, J.; Nachman, A.; Krykbaeva, I.; Tsao, S. M.; Moffat, J.; Pawson, T.; Lindquist, S.; Jurisica, I.; Stagljar, I. *Nat. Method.* **2014**, *11*, 585.

MaMTH Screening of Drug-resistant EGFR Mutant

Overview of MaMTH-DS

Library compound

<u>3 hit compounds</u> that exert robust, dose-dependent inhibition of EGFR triple mutant were identified

Hit Compounds from MaMTH Screening

inhibitor of Receptor Tyrosine Kinase FLT3¹⁾

inhibitor of EGFR T790 and EGFR L858R/T790M²)

 $F \xrightarrow{O}_{H_2N} \xrightarrow{O}_{NH} \xrightarrow{HN} \xrightarrow{O}_{NH}$

AZD-7762 checkpoint kinase (Chk) inhibitor³⁾

EMI1 inhibitor of microtube⁴⁾

Functional validation was conducted on these hit compounds

- 1) Levis, M. *Blood*, **2017**, *129*, 3403.
- 2) Lee, J. H.; Schaefer, G.; Heffron, P. T.; Shao, L.; Ye, X.; Sideris, S.; Malek, S.; Chan, E.; Merchant, M.; La, H.; Ubhayakar, S.; Yauch, L. R.; Pirazzoli, V.; Politi, K.; Settleman, J. *Cancer Discov.* **2013**, *3*, 168
- Sausvile, E.; LoRuuso, P.; Carducci, M.; Carter, J.; Quinn, F. M.; Malburg, L.; Azad, N.; Cosgrove, D.; Knight, R.; Barker, P.; Zabludoff, S.; Agbo, F.; Oakes, P.; Senderowicz, A. *Cancer Chemother. Pharmacol.* 2014, 73, 539
- 4) Kim, S. N.; Kim, H. N.; Park, S. Y,; Kim, H.; Lee, S.; Wang, Q.; Kim, K. Y. *Biochem. Pharmacol.* **2009**,477, 1773

AZD7762 Activity in MaMTH-DS and Kinase Assay

Comparable activity of ADZ7762 against WT and triple mutant in kinase assay (purified protein)

Selective activity against triple mutant in MaMTH-DS (in live cell)

Involvement of additional cellular factors in the mutant-specificity

EMI1 Activity in MaMTH-DS and Kinase Assay

- No effect on WT and triple mutant in kinase assay (purified protein)
- Selective activity against triple mutant in MaMTH-DS (in live cell)

It was found that EMI1 was not a direct inhibitor of EGFR. Functional validation of EMI1 was conducted.

EMI1 as a Microtube Inhibitor

EMI1 as a Modulator of EGFR Endosomal Distribution

EMI1 and midostaurin exert an inhibitory effect on the uptake and distribution of activated, mutant EGFR in early endosomes

EMI1 as a Modulator of EGFR Endosomal Distribution

The effects of EMI1 and midoustaurin on uptake of EGF are different

EGFR WT

f

EGFR L858R/T790M/C797S P < 0.0001

activated EGFR, but did not affect the average amount of activated EGFR per endosome

SAR Study of EMI1

benzoxazole

EMI53

EMI52

EMI60

SAR Study of EMI1

Summary

- New compounds specifically targeting the EGFR L858R/T790M/C797S were identified
- MaMTH system is a powerful tool for detection of the loss of functional interaction via various mechanisms

