The liver-brain-gut neural arc

2020/10/24 Ayumu Watanabe

Contents

1. Introduction

The liver-brain-gut neural arc maintains the Treg cell niche in the gut (T. Kanai, et al. *Nature*, **2020**, *585*, 591-596.)

Contents

1. Introduction

 The liver-brain-gut neural arc maintains the Treg cell niche in the gut (T. Kanai, et al. *Nature*, **2020**, *585*, 591-596.)

The gut-brain axis

Gut flora Dysbiosis Metabolic syndrome Cancer

· A balanced diet leads to a healthy body.

The gut-brain axis

The gut-brain axis is conceptually feasible

1) G. Sharon; T. R. Sampson; D. H. Geschwind; S. K. Mazmanian, Cell, 2016, 167, 915

The gut-brain axis

¹⁾ G. Sharon; T. R. Sampson; D. H. Geschwind; S. K. Mazmanian, Cell, 2016, 167, 915

Tregs

About Tregs (regulatory T cells)

- Suppressor T cells (CD4⁺ T cells)
 Essential for <u>immunological self-tolerance</u>
 and <u>immune homeostasis</u>
 Related to the <u>inflammatory</u> and <u>allergic disease</u>
- Foxp3 is the master regulatory gene Mutation of the Foxp3 leads to the <u>autoimmune</u> <u>disease</u> known as IPEX syndrome

¹⁾ K. Otsubo; H. Kanegane; I. Kobayashi; T. Miyawaki, *Jpn. J. Clin. Immunol*, **2010**, 33, 196-206. 2) S. Hori; T. Nomura; S. Sakaguchi, *Science*, **2003**, *299*, 1057-1061.

Tregs

About Tregs (regulatory T cells)

- Target of the immune checkpoint inhibitor PD-1 and CTLA-4 is expressed in Tregs Related to the <u>immune tolerance of the cancer</u>
- tTreg and pTreg
 tTreg: thymus-derived Treg
 pTreg: peripherally-derived Treg
 <u>Most of pTreg exist in the intestine</u>

¹⁾ K. Wing; Y. Onishi; P. P. Martin; T. Yamaguchi; M. Miyara; Z. Fehervari; T. Nomura; S. Sakaguchi, *Science*, **2008**, 322, 271-275.

APC

About APC (antigen presenting cell)

 Immune cells (MHC-II⁺ cells) Process antigens and present them to T-cells (<u>antigen presentation</u>) Proliferation, Differentiation and Activation of helper T-cells are induced Ex.) Dendritic cells, Macrophages and B cells

In the main paper, regarded as an <u>important factor</u> for Differentiation and Maintenance of pTregs

¹⁾ T. Kanai, et al. *Nature*, **2020**, *585*, 591-596.

Contents

1. Introduction

The liver-brain-gut neural arc maintains the Treg cell niche in the gut (Kanai, T. et al. *Nature*, **2020**, *585*, 591-596.)

Prof. Takanori Kanai

	Car
	198
Mered.	199
	199
	200
	200
	200
	201
	201
7	202

eer:	
8	B.S. @Keio University School of Medcine
2	Research Associate @Keio University School of Medcine
5	M.D. @Shizuoka City Shimizu Hospital
1	Research Associate @Tokyo Medical and Dental University
3-2007	Senior Lecturer @Tokyo Medical and Dental University
8-2012	Associate professor @Keio University School of Medcine
3-	Professor @Keio University School of Medcine
6-	Director of the Center for IBD, Keio University Hospital
0-	General manager of Joint Research Coronavirus Task Force

Research topics: IBD (Inflammatory bowel disease), Intestinal flora, Probiotics, Dysbiosis

Contents of Main Paper

1. What is the role of colonic APCs in maintaining the pTreg?

2. How the pTreg homeostasis is regulated?

Contents of Main Paper

1. What is the role of colonic APCs in maintaining the pTreg?

2. How the pTreg homeostasis is regulated?

The localization of neurons and APCs

\rightarrow the proximity of **neurons** and **APCs** in the colon

Difference of the expression of the gene between colonic and splenic APCs

- \rightarrow In the colon, the expression of the *Chrm1* is higher level than in the spleen.
- **Chrm1**: the gene encoding the <u>muscarinic Ach receptor</u>

Heat map of the expression of genes encoding neurotransmitter receptors, classified by sorted colonic and splenic APCs, as determined by RNA-sequencing analysis. TPM, transcripts per million.

Relative mRNA levels with neurotransmitters

Aldh1a1 and Aldh1a2 mRNA expression in colonic APCs treated with PBS (control), 10 μM acetylcholine (Ach), 10 μM muscarine (Mus), 100 nM adrenaline (Adre), 100 μM neuropeptide Y (NPY), 100 nM substance P (Sub P), 10 μM serotonin (5-HT) or 100 ng ml-1 neuromedin U (NMU) for 12 h (n = 5 per group).

Gated on APCs: CD45⁺CD3⁻B220⁻NK1.1⁻MHC-II⁺ P < 0.05 was considered significant

Aldh1a1, 2

Aldh1a1 and Aldh1a2 expression in wild-type (WT) and mAChR TKO colonic APCs. Colonic APCs were isolated from wild-type or mAChR TKO mice and treated with 10 µM muscarine or untreated for 12 h (n = 6 per group).

→ mAChR TKO (mAChR-deficient) mice: Aldh1a1 and 2 not increased

ALDH1A1 and ALDH1A2 mRNA levels in human colonic APCs. Colonic APCs were treated with 10 µM Mus or untreated for 12 h (n = 7 per group).

→ In human colonic APCs, ALDH1A1 and 2 increased by Mus

The effect of APC and Mus to the amount of pTreg

→ pTreg level was enhanced by APC and Mus from WT mice, but not from KO mice

Vagus nerve: parasympathetic nerve in gastrointestinal tract

The effect of VGx (1)

\rightarrow Aldh1a1, 2 level was decreased by VGx

The effect of VGx (2)

Colonic T cell phenotypes and colonic gene expression were analysed 2 days later (n = 12 per group). Frequency of ALDH+ cells among MHC-II+APCs (CD45+TCR β -CD3-B220-NK1.1-MHC-II+) in the colon. Quantification of ALDH+ cells. Frequency of FOXP3+ (Treg) cells among CD4+ T cells in colonic lamina propria.

→ frequency of ALDH⁺ and pTreg were decreased by VGx

WT mice were subjected to Sham or VGx and then were given DSS for 7 days, starting at day 2 after surgery. Graphs show pooled data of three independent experiments (n = 15/group).

a, Relative body weight change during colitis. ** indicates P < 0.01. b, DAI.

c, Representative HE staining of colon sections (left panel, bar: 200 µm) and histological scores (right panel).

→ the susceptibility to DSS-induced colitis model was increased by VGx

Short Summary

Colonical APCs:

- *Chrm1* was highly expressed
- Aldh1a1, 2 was increased by Ach and Mus
- **pTreg** was **enhanced** by APC with Mus
- mAchR was essential to this enhancement

VGx (perturbation of Vagus nerve):

- Aldh1a1, 2 level and ALDH⁺ cells were decreased
- pTreg were decreased
- the **susceptibility** to colitis was **increased**

Contents of Main Paper

1. What is the role of colonic APCs in maintaining the pTreg?

2. How the pTreg homeostasis is regulated?

Exploration of the key neurons (1)

WT mice were given DSS or water for 6 days (n = 6/group). Representative images of immunofluorescence staining for pERK1/2 (green) in NG (upper panel, bar: 100 µm). Quantification of pERK1/2-expension neurons (lower panel).

Marker of the functional activity

\rightarrow Nodose ganglions(NGs) were activated in colitis

Exploration of the key neurons (2)

Representative images of c-Fos immunoreactivity in NTS (left panel, bar: 200 µm). Number of c-Fos immunoreactive neurons (right panel). Representative images of immunofluorescence double-staining for pERK1/2 (green) and PGP9.5 (red) in murine liver sections. Co-stained sites are shown in yellow (left panel). Scale bar indicates 10 µm. Quantification of pERK1/2-experssing area in PGP9.5 positive nerve fibre (right panel).

→ NTS and vagus nerve in the liver were activated in the colitis

HVx (Hepatic vagotomy)

Vagus nerve in the liver was activated in colitis

Effect of the HVx (1)

Wild-type mice were subjected to HVx or sham surgery and were then given DSS for 7 days, starting at day 2 after surgery (n = 4 per group). DMV, dorsal motor nucleus of the vagus; AP, area postrema.

Representative immunostaining for phosphorylated ERK1/2 (pERK1/2) in NG. Scale bars, 100 µm. Relative pERK1/2 level in NG per section.

\rightarrow The only Left NG was deactivated by the HVx

Effect of the HVx (2)

Wild-type mice were subjected to HVx or sham surgery and were then given DSS for 7 days, starting at day 2 after surgery (n = 4 per group). DMV, dorsal motor nucleus of the vagus; AP, area postrema.

Top, representative immunostaining for c-Fos in medulla oblongata. Scale bars, 200 µm. Bottom, relative c-Fos expression in NTS and DMV per section. L, left; R, right.

\rightarrow Left NTS and DMV were deactivated by the HVx

Effect of the HVx (3)

Wild-type mice were subjected to VGx, HVx or sham surgery (n = 9 per group).

→ frequency of pTreg was decreased by HVx as same level as VGx

Retrograde tracing

Anterograde

Hepatic retrograde tracing

WGA retrograde tracing. WT mice were subjected to Sham or HVx and then were injected with Alexa Fluor 488 conjugated WGA at day 2 after surgery (n = 3/group). Fluorescence image of Alexa Fluor 488+ neuron (green) and DAPI (blue) in NG (f) at 1 week after injection of WGA in liver. Representative images (left panel, bar: 50 µm). Number of WGA+ neurons (right panel).

WGA in liver. Arrowheads indicate WGA+ neurons in NG. Scale bars, 100 µm. → the liver transmits signals via the left NG and the signals were reduced by the HVx

1) T. Kanai, et al. Nature, **2020**, 585, 591-596.

WGA / DAPI = marker of the DNA

Wheat germ agglutinnin (WGA) retrograde tracing. Representative fluorescence images of WGA–Alexa Fluor 488 (green) and DAPI (blue) in NG at 1 week after injection of

= retrograding marker of the neurons

Functional asymmetry

Left NG, NTS and DMV were affected by the HVx The functional asymmetry ? Left or Right Surgical perturbation = LVx, RVx

Wild-type mice were subjected to ventral subdiaphragmatic vagotomy (LVx), dorsal subdiaphragmatic vagotomy (RVx) or sham surgery (n = 4 per group). Frequency of FOXP3+ cells among CD4+ cells in colon at day 2 after surgery.

Another pathway?

There are **two** kown pathways from liver to brain

- via NG pathway
- via DRG pathway

the <u>DRG pathway</u> affect the pTreg as well?

NTS: nucleus tractus solitarius NG: Nodose ganglion DRG: Dorsal root ganglion DRG: **TRPV1(+)** neuron, Generate the **CGRP**

HVx

WGA: retrograding marker of the neurons DAPI : marker of the DNA

WGA / DAPI

WT mice were subjected to Sham or HVx and then were injected with Alexa Fluor 488 conjugated WGA at day 2 after surgery (n = 3/group). Fluorescence image of Alexa Fluor 488+ neuron (green) and DAPI (blue) in Th4 DRG at 1 week after injection of WGA in liver, Representative images (left panel, bar; 50 µm), Number of WGA+ neurons (right panel).

 \rightarrow the liver transmits signals via the **DRG** but the signals were **not affected** by the **HVx** = DRG pathway is independent for the common hepatic branch of the vagus nerve

Experiments with RTX

Eight-weekold WT type were intrathecally injected with resiniferatoxin (RTX) (n = 4/group). TRPV1+ nerves in spinal cord (Th4-7 and Th13) and colonic immune cells were analysed at day 7 after administration.

Colonic CGRP levels. Frequency of Foxp3+ cells among CD4+ cells. Frequency of ALDH+ cells among MHC-II+ colonic APCs.

→ CGRP was reduced by RTX = DRG was deactivated by RTX but, ALDH⁺ cells and pTreg were not reduced ↓ DRG pathway did not affect the number of pTreg

Summary

liver-brain-gut neural arc: Liver \rightarrow Left vagus (afferent) \rightarrow Left NG \rightarrow Left NTS \rightarrow Left DMV \rightarrow Left vagus (efferent) \rightarrow gut

APC and pTreg: Ach $\uparrow \rightarrow$ mAchR \uparrow (APC) \rightarrow ALDH $\uparrow \rightarrow$ RA $\uparrow \rightarrow$ pTreg \uparrow

Future expectation

1. New treatment for IBD (Ulcerative colitis, Crohn's disease)

2. Control the excessive immune response induced by virus. Ex.) COVID-19