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What is Machine Learning (ML)

・Tool to find rules and patterns in the data
・Identification and prediction are the main uses
・It is likely to be more accurate than traditional methods
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What is Machine Learning (ML)

Model Building Mechanism

See also 160916_LS_Yuki_NAKAGAWA and 180411_LS_Yusuke_Imamura

input

shape, color, size…

feature extraction

A

B

C

D

classification output

not flask

flask
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Catalyst Design Using 
Molecular Field Analysis (MFA)

Construction of an in silico library of catalysts

Calculation of molecular fields

Collection of the experimental data

Application of machine learning methods to generate models

1

2

3

4

MFA: A regression analysis between an objective variable and molecular fields 
calculated from 3D-molecular structures 

an objective variable = the enantiomeric ratios of products for the purpose of 
molecular design in asymmetric catalysis 

Procedure
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Catalyst Design Using MFA
step 1: Construction of an in silico library of catalysts

O

O

P

R

R

X

Y

a particular scaffold

synthetic accessibility

in silico library 

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau56317



Catalyst Design Using MFA
step 2: Calculation of molecular fields

𝑦 = 𝛽0 + 𝛽1𝑥1 + ・・・+ 𝛽𝑛𝑥𝑛

regression analysis

y ∶ the logarithms of product enantiomeric ratios (krel)
(i.e. ΔΔG‡ = -RTlogkrel)

xn ∶ parameters for chemical properties of compounds
(i.e. “descriptor(記述⼦)”)

β ∶ regression coefficient (Constants determined by performing a regression analysis)
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Catalyst Design Using MFA
step 2: Calculation of molecular fields

c

c

placed in a grid space → 𝑥!

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 9



Catalyst Design Using MFA
step 4: Application of machine learning methods to generate models

Experimental data

training set test set

for creating a regression model for evaluating the 
model

← Is this a flask?

Yes

Good model

← This is a flask.

← This is not a flask.

Learning 10



Key Points in This Lecture

・Differences in molecular field analysis methods 

・Differences in the amount of the training data

Bull. Chem. Soc. Jpn. 2019, 92, 1701

a small amount of reactions using 
theoretical approach 

Science 2019, 363, eaau5631

a large amount of reactions
using experimental approach 

Bull. Chem. Soc. Jpn. 2019, 92, 1701 Science 2019, 363, eaau5631

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701
2) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563111
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Model Reaction System (step 1)

c

c

R = Me, Et, Bn, iPr, Cy, tBu (6 substrates)

𝟔 𝒔𝒖𝒃𝒔𝒕𝒓𝒂𝒕𝒆𝒔 × 𝟓 𝒄𝒂𝒕𝒂𝒍𝒚𝒔𝒕𝒔
= 𝟑𝟎 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏

24 reactions were used as 
training data 

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn 2019, 92, 1701
2) Hamashima, Y.; Yagi, K.; Takano, H.;Tamás, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530 14

NFSI (1.0 eq.)
2Pd

(5 mol% Pd)

THF, 20 °C, 20 h
 ~ 80 % 

19 - 81 % ee

N

F

PhO2S SO2Ph

NFSI

O

O

O
R

O

O

O
R



Calculation of Molecular Fields (step 2)

Molecular structures without substrates in 
calculations of molecular fields were 
employed for MFA

→There are no example of molecular design 
to improve enantioselectivity

Intermediate structures in an 
asymmetric induction step were 
employed for MFA

Most MFA reported to date 

In this study

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 15



Calculation of Molecular Fields (step 2)

c

c c

c
Optimization of Pd-enolate structures 
(B3LYP/LANL2DZ(Pd) and 6-31G(d) 
level)

Alignment of the set of intermediates

Atoms except for the β-ketoester and equatorial Ar-groups on the ligands 
were removed.

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 16



Calculation of Molecular Fields (step 2)

c

c
c

→ 𝑥!

𝑦 = 𝛽! + 𝛽"𝑥" +⋯+ 𝛽#𝑥#

A unit cell

= 1= 0

A van der Waals radii of an atom

indicator field

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 17



c c 𝑥", 𝑥#, ⋯ , 𝑥$"
c

Columns in the descriptor matrix that exhibited 
small deviations were removed

61 dimensional descriptors

Elastic Net regression

19 important descriptors were extracted

= 19 important unit cells          were extracted 

Application of ML Methods 
to Generate Models (step 4)

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 18



c

c

c

c

R = Bn

𝑺𝒊-face 𝑹𝒆-face

c

2Pd

= 2Pd-Bn

Application of ML Methods 
to Generate Models (step 4)

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701
19



Molecular Design to Improve 
Enantioselectivity

c

O

O

O

O

O

O

2Pd-Bn 2Pd-Bzh

Bzh

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701
20



c

NFSI (1.0 eq.)
2Pd

(5 mol% Pd)

THF, 20 °C, 20 h

N

F

PhO2S SO2Ph

NFSI

O

O

O O

O

O

F

calculated ΔΔG‡ = 3.6 kcal/mol
(about 99 % ee)
Experimental result : 94 % ee

Better than any of the data in the training set 

Molecular Design to Improve 
Enantioselectivity

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 21



Short Summary

c

・Molecular field analysis methods:
Intermediate structures in an asymmetric induction step were employed for 

MFA

・The amount of the training data:
A little amount of reactions (24 reactions) were used as a training data

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 22
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The catalyst scaffold (step 1)

c

target: The BINOL (1,1’-bi-2-naphthol)-derived family of chiral phosphoric acids

・synthetic accessibility
・ease of diversification by installation of an array of substituents
・the acidity of the phosphoryl group can be unsaturated
・the backbone can be unsaturated or saturated
・can be used for a vast number of synthetically useful reactions

O

O

P

R

R

X

Y

O

O

P

R

R

X

Y

806 chiral phosphoric acid catalysts in the silico library 

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563124



Calculation of Molecular Fields (step 2)

Molecular structures without substrates in 
calculations of molecular fields were 
employed for MFA

→There are no example of molecular design 
to improve enantioselectivity

Average Steric Occupancy (ASO) were 
employed for MFA

Most MFA reported to date 

In this study

O

O

P

R

R

X

Y

O

O

P

R

R

X

Y

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701
2) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563125



Average Steric Occupancy (ASO) (step 2)

c

A unit cell

A van der Waals radii of an atom

“0”

“1”

The indicator field in this paper

The grid points that included the van der Waals radii of any atoms were counted 
as 1, or were otherwise counted as 0.

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563126



Average Steric Occupancy (ASO) (step 2)

ASO and electronic descriptors for reactants and products (+catalyst)
→individual reaction profiles including substrate properties.

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563127



Universal Training Set (UTS) (step 3)

・A training set was chosen randomly from experimental data.

・There is a risk that the model would not be sufficiently accurate, depending on 
the variability of the results used for the training set.

・Catalysts from uniform regions of feature space are sampled 

Conventional methods

UTS

・It can be used to optimize any reaction that can be catalyzed by that 
catalyst type. 

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563128



c

c
c

c cc

Universal Training Set (UTS) (step 3)

24 catalysts

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563129



Model Reaction (step 3)
c

25 combinations

1) Henle, J. J.; Zahrt, A. E.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. J. Am. Chem. Soc. 2020, 142, 11578
2) Ingle, G. K.; Mormino, M. G.; Wojtas, L.; Antilla, J. C. Org. Lett. 2011, 13, 4822
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Test Catalysts with Averages for 
All Substrate Combinations (step 3)

19 catalysts

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563131



Modeling Study
Could this tool be used to predict the results of either new substrate 

combinations or new catalysts?

training set

16 reactions
×

24 catalysts (UTS)

=384 data

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563132



Modeling Study

a) new substrate b) new catalyst c) new substrate & new catalyst

× × ×
UTS (24 catalysts) Test catalysts (19 catalysts) Test catalysts (19 catalysts)

test set

9 combinations 16 combinations 9 combinations

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631

= 216 reactions = 304 reactions = 171 reactions

Could this tool be used to predict the results of either new substrate 
combinations or new catalysts?
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Modeling Study

c(a)
c(b)
c(c) a) MAD: 0.161 kcal/mol

b) MAD: 0.211 kcal/mol
c) MAD: 0.236 kcal/mol

・Mean Absolute Deviation (MAD)：
The average of the absolute value of the 
difference between the predicted and 
actual values

𝑴𝑨𝑫 =
𝟏
𝒏
'
𝒊"𝟏

𝒏

𝒙𝒊 − *𝒙

→ The model made good predictions

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631

ΔΔG‡ = 3.0 kcal/mol → about 99 % ee
0.5 kcal/mol → about 40 % ee

the support vector machines method was 
used (second-order polynomial kernel, q2 = 
0.748 by k-fold cross validation) 

Could this tool be used to predict the results of either new substrate 
combinations or new catalysts?
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Summary

Intermediate structures in an 
asymmetric induction step

ASO

generating models

training dataA little amount of reactions
(24 reactions) 

A large amount of reactions
(using “UTS”) 

The main differences between two methods

calculation of molecular fields

Bull. Chem. Soc. Jpn. 2019, 92, 1701 Science 2019, 363, eaau5631

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701
2) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563135
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ML and Organic Chemistry

1) Szymkuć, S.; Gajewska, E.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. 
Angew. Chem. Int. Ed. 2016, 55, 5904.
2) Wei, J. N.; Duvenaud, D.; Aspuru-Guzic, A. ACS Cent. Sci. 2016, 2, 725.

Computer-assisted synthetic planning Prediction of organic reaction outcome

See also 160916_LS_Yuki_NAKAGAWA and 180411_LS_Yusuke_Imamura
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Conventional Process of Catalyst Design

1) Jang, K. J.; Hutson, G. E.; Johnson, R. C.; McCusker, E. O.; Cheong, P. H. -Y.; Scheidt, K.A. 
J. Am. Chem. Soc. 2014, 136, 76.

DFT calculation Catalyst/Substrate Optimization

38



Proposed Reaction Mechanism

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 39



Regularized Regression Model

An analysis method that reduces the estimate by adding constraints 
to the ordinary least squares method

Features:
1) Calculation of estimation
2) Variable selection

Examples:
1) Ridge regression
2) Lasso regression
3) Elastic Net regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

A Example of Least Squares Method

x y

0.85823458 0.0172966

0.08798015 0.79650097

0.32214503 0.97746291

0.60233696 0.47201085

0.34828249 0.61622624

0.11730202 0.22664236

0.47086469 0.10788457

40



Ridge Regression and Lasso Regression
Ridge regression Lasso regression

RSS: Residual Sum of Squares

Contours of RSS
Contours of RSS

the penalty term the penalty term

The ridge regression coefficient
The lasso regression coefficient

Elastic Net has the strong points of both the ridge regression and the lasso regression.

It is used to improve the accuracy of the 
model.

The number of variables included in the
model is limited, making it easier to 
interpret.

41



Visualized important structural 
information with the structures 

c

c

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 42



Data Used for the MFA

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 43



Arrhenius equation

ΔΔ𝐺‡ = −𝑅𝑇𝑙𝑛𝑘"#$

𝑘%&' =
"(()%&&
"(( +%&&

, R: gas constant, T: temperature

ΔΔ𝐺‡

starting material

(S) or (R)

TS for (S)

TS for (R)

Energy

ΔΔ𝐺‡: a difference in free energy between competing transition states leading 
to different enantiomers

1) Toyao,T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K. ACS. Catal. 2020, 10, 226044



c

c

NFSI conformation of the 
transition states

c

c

cThe lowest energy conformers are showed in this page.
Distances between oxygen atoms on NFSI and some 
hydrogen atoms on the Pd-enolate complexes in the 
structures The units of atomic distances are Å. 
NFSI conformations are different.

c

c

c

c

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 45



c

c

Distortion Energy

c

c

c

c

c

c

c

cc

cc c

c c
cc

the second lowest 
energy geometry in 
S-pathway of the 
reaction 2Pd-iPr had 
the same NFSI 
conformation with 
that of TS-1Pd-iPr_S

the difference 
between the 
distortion energies 
of the R-pathways is 
1.1 kcal/mol  c

the difference 
between the 
distortion energies 
of the S-pathways is 
1.4 kcal/mol  

c

c

c

c

1) Yamaguchi, S.; Sodeoka, M. Bull. Chem. Soc. Jpn. 2019, 92, 1701 46



Average Steric Occupancy (ASO) (step 2)

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563147



Electrostatic Potential  (ESP) (step 2)

・represent the through-bond electronic perturbation a substituent has on a 
system

Conventional methods (Hammett parameters)

・However, the 3,3′- substituents in the in silico library are too diverse to 
be represented with experimentally derived Hammett parameters

→ a new calculable parameter had to be developed that reflects the 
perturbation of the substituent on a charged particle: ESP

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631
2) Henle, J. J.; Zahrt, A. E.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. J. Am. Chem. Soc. 2020, 142, 11578
3) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165

O

O

P

R

R

X

Y

O

O

P

R

R

X

Y

3,3’- substituents
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Electrostatic Potential  (ESP) (step 2)

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631
2) Henle, J. J.; Zahrt, A. E.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. J. Am. Chem. Soc. 2020, 142, 11578

Example MIF calculated for 4-nitrobenzyltrimethylammonium cation.

49



Electrostatic Potential  (ESP) (step 2)

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631
2) Henle, J. J.; Zahrt, A. E.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. J. Am. Chem. Soc. 2020, 142, 11578

Evaluation of ESPMAX descriptor by correlating relative ESPMAX  with Hammett parameters. 
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Universal Training Set (UTS) (step 3)

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631

UTS
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Principal Component Analysis  (PCA)

0
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Principal component analysis (PCA) is a technique for reducing the 
dimensionality of such datasets, increasing interpretability but at the same 
time minimizing information loss.

1) Jolliffe, I. T.; Cadima, J. Phil. Trans. R. Soc. A. 374: 20150202 52



Kennard-Stone Algorithm (step 3)
This algorithm is one of the famous ways to select a sample of 
training data in an evenly distributed manner

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

AVERAGE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

CHOSEN

Chose the maximum 
of the representative 
distance

Calculate Euclidean distances between the 
not yet selected samples and all the 
samples selected so far. The minima of 
those distances become the representative 
distance for each sample.

1) Kennard, R. W.; Stone, L. A. Technometrics 1969, 11, 137

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

CHOSEN

repeat
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Machine Learning Method (step 4)

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563154



Parametric method (step 4)

Linear Regression Feedforward Neural Network

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

input x weight w output y

y1

y2

w11

w21

w31

x1

x2

x3

y1 = f(w11x1 + w12x2 + w13x3 )

These parameters are determined by training sets. The training sets are 
never used after training.
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Kernel method (step 4)

x

y

x0

Predict the value of y when x=x0

It is thought to take a value close to y 
of the data (     ) in the vicinity of x0

On the other hand, there is no 
relationship between the data far from 
x0 and the value of y when x=x0.

𝑦( = ?
-.(

!

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥( 𝑎𝑛𝑑 𝑥- × 𝑦-

Kernel func6on 56



Support Vector Machine (SVM) (step 4)
It is thought that SVM is has the best pattern classification in the common 
machine learning methods.

conventional method

This model tends to make a wrong prediction

SVM

near the boundary line

iden=fy the ”best boundary line”

：support vectors

：margin

“margin” is a distance between a support vector and a boundary line

cclassification

57



Examples of Good Prediction
c

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau563158



Another Modeling Study
c

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631

Could this tool be used to identify new reactions that are more 
selective than any reaction in the training data?

Experimental data

training set test set

for creating a regression model for evaluating the 
model

In this model study…

All reactions below 80 % ee
(718 reactions)

All reactions above 80 % ee
(357 reactions)

Note that the UTS was not used in this model study.
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Another Modeling Study
c

1) Zahrt, A. E.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, eaau5631

Could this tool be used to identify new reactions that are more 
selective than any reaction in the training data?

Predicted and observed average selectivities for the 8 catalysts 
with average enantioselectivity over 80% ee are shown below. 

(deep feed-forward neural networks)

MAD: 0.33 kcal/mol
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c

1) Henle, J. J.; Zahrt, A. E.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. J. Am. Chem. Soc. 2020, 142, 11578

Development of a Computer Workflow 
for Catalyst Optimization

61


