Asymmetric Cu-Catalyzed C(*sp*³)-C(*sp*) Coupling by Liu's group

2020.05.20

Toshiya Nagai

Contents

- 1. Introduction
- 2. Asymmetric *Cu*-Catalyzed C(*sp*³)-C(*sp*) Coupling ¹⁾

3. Asymmetric *Cu*-Catalyzed Radical 1,2-Carboalkynylation of Alkenes²⁾

1) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nature Chemistry 2019, 11, 1158. 2) Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, in press.

Contents

1. Introduction

3. Asymmetric *Cu*-Catalyzed Radical 1,2-Carboalkynylation of Alkenes²⁾

1) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nature Chemistry 2019, 11, 1158. 2) Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, in press.

Alkynylations-1

1. Nucleophilic alkynylation

- 3. Sonogashira-type cross-coupling

Alkynylation-2

1) Zhang, R.-Y.; Xi, L.-Y.; Zhang, L.; Liang, S.; Chen, S.-Y.; Yu, X.-Q. RSC Adv. 2014, 4, 54349.

2) a) Yoshioka, S.; Nagatomo, M.; Inoue, M. Org. Lett. 2015, 17, 90.

b) Hoshikawa, T.; Kamijo, S.; Inoue, M. Org. Biomol. Chem. 2013, 11, 164.

Sonogashira-type Cross-coupling

1) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, *50*, 4467. 2) Eckhardt, M.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 13642. 3) Altenhoff, G.; Würtz, S.; Glorius, F. *Tetrahedron Lett.* **2006**, *47*, 2925.

Asymmetric Cu-Catalyzed S_N2' reaction by Tan's group

proposed reaction mechanism

1) Cui, X.-Y.; Ge, Y.; Tan, S. M.; Jiang, H.; Tan, D.; Lu, Y.; Lee, R.; Tan, C.-H. J. Am. Chem. Soc. 2018, 140, 8448.

Contents

1. Introduction

2. Asymmetric *Cu*-Catalyzed C(*sp*³)-C(*sp*) Coupling ¹⁾

3. Asymmetric *Cu*-Catalyzed Radical 1,2-Carboalkynylation of Alkenes²⁾

Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. *Nature Chemistry* 2019, *11*, 1158.
 Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. *J. Am. Chem. Soc.* 2020, in press.

Prof. Xin-Yuan Liu

Career:

1997-2001 : B.S., Anhui Normal University
2001-2004 : M.S., Anhui Normal University (Prof. Shizheng Zhu) and Shanghai Institute of Organic Chemistry (Prof. Shaowu Wang)
2005-2010 : Ph D., The University of Hong Kong (Prof. Chi-Ming Che)
2010-2012 : Postdoc, the Scripps Research Institute (Prof. Carlos F. Barbas III) and The University of Hong Kong (Prof. Chi-Ming Che)
2012-2017 : Associate Professor, Southern University of Science and Technology
2018- : Full Professor, Southern University of Science and Technology

Research topic: Transition-metal catalysis, asymmetric catalysis, radical chemistry 1. Asymmetric C-H functionalization

Photoinduced Cu-Catalyzed Coupling of **Terminal Alkyne and Alkyl lodide by Lalic's group** CuCl (10 mol%) Ligand (20 mol%) p-BrC₆H₄O K₂CO₃ (3 eq.) MeO₂C p-BrC₆H₄O CH₃CN/MeOH MeO₂C blue LED 2 eq. 1 ea. R^{1} -R ^tBu L_nCu^IX base ^tBu ^tBu Ĺ L_nCu[∥]── L_nCu^l Ligand SET photoexcitation If the proper chiral ligand is used, the L_nCu R¹-I enantioselective radical addition would occur without photoirradiation, to realize the assymmetric cross-coupling??

1) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. *Nature Chemistry* **2019**, *11*, 1158. 2) Sladojevich, F.; Trabocchi, A.; Guarna, A.; Dixon, D. *J. Am. Chem. Soc.* **2011**, *133*, 1710.

Optimization of Reaction Condition

entry	Cu	base	solvent	yield (ee)	entry	Си	base	solvent	yield (ee)
1	Cul	Cs ₂ CO ₃	CH ₃ CN	81% (50% ee)	8	Cul	Cs ₂ CO ₃	CH ₂ Cl ₂	65% (61% ee)
2	Cul	Cs ₂ CO ₃	EtOAc	85% (72% ee)	9	Cul	Cs ₂ CO ₃	DCE	52% (54% ee)
3	Cul	Cs ₂ CO ₃	<i>t-</i> BuOMe	83% (78% ee)	10	CuCl	Cs ₂ CO ₃	Et ₂ O	83% (82% ee)
4	Cul	Cs ₂ CO ₃	toluene	65% (79% ee)	11	CuBr	Cs ₂ CO ₃	Et ₂ O	84% (82% ee)
5	Cul	Cs ₂ CO ₃	THF	79% (73% ee)	12	CuTC	Cs ₂ CO ₃	Et ₂ O	<mark>89% (82% ee)</mark>
6	Cul	Cs ₂ CO ₃	MeOH	81% (53% ee)	13	CuTC	K ₃ PO ₄	Et ₂ O	88% (81% ee)
7	Cul	Cs ₂ CO ₃	Et ₂ O	87% (81% ee)	14	CuTC	NaOH	Et ₂ O	87% (81% ee)

Investigation of Chiral Legand-2

Summary-1

Next task: three-component coupling reaction by radical traping

Contents

1. Introduction

2. Asymmetric *Cu*-Catalyzed C(*sp*³)-C(*sp*) Coupling ¹⁾

3. Asymmetric *Cu*-Catalyzed Radical 1,2-Carboalkynylation of Alkenes²⁾

Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. *Nature Chemistry* **2019**, *11*, 1158.
 Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. *J. Am. Chem. Soc.* **2020**, in press.

Asymmetric *Cu*-Catalyzed Radical 1,2-Carboalkynylation of Alkenes

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. *J. Am. Chem. Soc.* **2020**, in press.

Optimization of Reaction Condition

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, in press.

Substrate Scope of Alkenes

R =

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, in press.

85% (96% ee)

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. *J. Am. Chem. Soc.* **2020**, in press.

Substrate Scope of Alkyl Radical Precursors

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, in press.

1H-NMR Study of The Cu^I complex QCH₃ 10 17 16 12 23 NH PPh2 20 A: L1 21 15 N H6b O H₆a H2 H7a H7b L1 29 B: L1 + Cul

.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 :

Protons adjacent to the guinuclidine nitrogen shifted to downfield by mixing L1 and Cul. The ³¹P-NMR experiments also showed the downfield shift (+2.4 ppm). –> L1 worked as a multidentate ligand.

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. J. Am. Chem. Soc. 2020, in press.

Proposed Enantioselectivity

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. *J. Am. Chem. Soc.* **2020**, in press.

Summary-2

A -> B

- The bulky tertiary radical reacts with alkene or alkyne.
- The transition state leading to alkyl radical would be more stable than that of vinyl radical.
- B -> C
- The relatively stable benzyl radical reacts with Cu^{II} complex.

Dong, X.-Y.; Cheng, J.-T.; Zhang, Y.-F.; Li, Z.-L.; Zhan, T.-Y.; Chen, J.-J.; Wang, F.-L.; Yang, N.-Y.; Ye, L.; Gu, Q.-S.; Liu, X.-Y. *J. Am. Chem. Soc.* **2020**, in press.