Breaking the Base Barrier -Rational design of Pd and Ni catalyst for the efficient C-N bond formation reaction-

2020. 4. 25. Literature Seminar D2 Tsukasa Shimakawa

Contents

1. Introduction

- 1-1. Buchwald ligand
- 1-2. Precatalyst

2. DBU using C-N cross coupling (Buchwald, 2018)

Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C–N Coupling

Joseph M. Dennis,[†][©] Nicholas A. White,[†][©] Richard Y. Liu,[©] and Stephen L. Buchwald^{*®}

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

3. Et₃N using C-N cross coupling (Buchwald, 2020)

Article

Article pubs.acs.org/JACS

The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N Cross-Coupling

Richard Y. Liu, † Joseph M. Dennis, † and Stephen L. Buchwald*

Prof. Stephen, L. Buchwald / Introduction

Education and academic career:

- 1977. B.S.c @Brown University (Parker, K. A. and Cane, D. E.)
- 1982. Ph. D. @Harvard University (Prof. Knowles, J. R.)
- 1982-1984. Posdoc, @Caltech (Prof. Grubbs, R. H.)
- 1984-1993 Assistant and Associate professor, @MIT
- 1993- Professor, @MIT

Research area:

- 1. Cross-coupling 2. Bioconjugation
- 3. Continuous flow synthesis 4. Copper-hydride chemistry

O Design of ligand and Pd precatalyst \rightarrow well studied X Require strong base \rightarrow longstanding problem

a) https://chemistry-buchwald.mit.edu/ b) Surry, D. S. and Buchwald, S. L. *Chem. Sci.* **2011**, *2*, 27. c) Surry, D. S. and Buchwald, S. L. *Angew. Chem. Int. Ed.* **2008**, *47*, 6338.

Anionic nucleophilic base

NaO*t*-Bu, LiN(TMS)₂,,, 1. incompatible with many functional group (CF₃, halogen, etc)

Inorganic insoluble base

K₃PO₄, K₂CO₃, Cs₂CO₃,,, 1. difficult to stir onscale 2. particle size affects reactivity

Buchwald ligand (1)

Surry, D. S. and Buchwald, S. L. *Angew. Chem. Int. Ed.* **2008**, *47*, 6338. Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. *J. Org. Chem.* **2003**, *68*, 2861.

Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. *J. Am. Chem. Soc.* **2005**, *127*, 4685. Barder, T. E. and Buchwald, S. L. *J. Am. Chem. Soc.* **2007**, *129*, 12003.

5

a) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. *J. Am. Chem. Soc.* **2008**, *130*, 6686. b) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. *Chem. Sci.* **2013**, *4*, 916. c) Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. *J. Org. Chem.* **2014**, *79*, 4161. d) Lee, H. G.; Milner, P. J.; Buchwald, S. L. *Org. Lett.* **2013**, *15*, 5602. e) Lee, H. G.; Milner, P. J.; Colvin, M. T.; Andreas, L.; Buchwald, S. L. *Inorg. Chim. Acta.* **2014**, *422*, 188. f) Ingoglia, B. T. and Buchwald, S. L. *Org. Lett.* **2017**, *19*, 2853.

Contents

- 1. Introduction
- 1-1. Buchwald ligand
- 1-2. Precatalyst

2. DBU using C-N cross coupling (Buchwald, 2018)

Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C–N Coupling

Joseph M. Dennis,[†][©] Nicholas A. White,[†][©] Richard Y. Liu,[©] and Stephen L. Buchwald^{*®}

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

3. Et₃N using C-N cross coupling (Buchwald, 2020)

Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. *J. Org. Chem.* **2006**, *71*, 430. Norrby, P-O. et al. *J. Org. Chem.* **2014**, *79*, 11961.

Base effect in Pd catalyzed fluorination

Lee, H. G.; Milner, P. J.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 3792.

In situ modification of the catalyst

Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase, M. K.; Buchwald, S. L. *J. Am. Chem. Soc*, **2011**, *133*, 18106.

AIPhos -efficient Buchwald ligand-

a) Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase, M. K.; Buchwald, S. L. *J. Am. Chem. Soc.* **2011**,*133*, 18106. b) Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Muller, P.; Buchwald, S. L₁ *J. Am. Chem. Soc.* **2015**, *137*, 13433.

Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. J. Am. Chem. Soc. 2018, 140, 4721.

i-Pr

*i-*Pr

Correlation between Buchwald ligand and Pd-charge

a) B3LYP/6-31G(d)-SDD/SMD(THF)

1. Large **R** group and 2. electron-deficient aromatic ring increases the acidity of N-H proton

Norrby, P-O. et al. *J. Org. Chem.* **2014**, *79*, 11961. Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. *J. Am. Chem. Soc.* **2018**, *140*, 4721. **AIPhos**

Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. *ACS. Catal.* **2019**, *9*, 3822. Norrby, P-O. et al. *J. Org. Chem.* **2014**, *79*, 11961.

Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. ACS. Catal. 2019, 9, 3822.

The role of C3' substituent in AIPhos

Kim, S-T.; Pudasaini, B.; Baik, M-H. *ACS. Catal.* **2019**, *9*, 6851. Barder, T. E. and Buchwald, S. L. *J. Am. Chem. Soc.* **2007**, *129*, 12003.

a) Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. *J. Org. Chem.* **2006**, *71*, 430. b) Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. *J. Am. Chem. Soc.* **2018**, *140*, 4721. c)Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. *ACS. Catal.* **2019**, *9*, 3822.

Contents

- 1. Introduction
- 1-1. Buchwald ligand
- **1-2. Precatalyst**
- 2. DBU using C-N cross coupling (Buchwald, 2018)

3. Et₃N using C-N cross coupling (Buchwald, 2020)

Article

The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N Cross-Coupling

Richard Y. Liu, † Joseph M. Dennis, † and Stephen L. Buchwald *

a) Park, M. H.; Teverovskiy, G.; Buchwald, S. L. *Org. Lett.* **2014**, *16*, 220. b) Ge, S. and Hartwig, J. F. *J. Am. Chem. Soc.* **2011**, *133*, 16330. c) Ge, S.; Green, R. A.; Hartwig, J. F. *J. Am. Chem. Soc.* **2014**, *136*, 1617.

Key structure for the reaction 1. ferrocene backbone 2. electron-deficent Ar group

Unsuccessful oxidative addition precatalyst

a) Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. *J. Am. Chem. Soc.* **2020**, *142*, 4500. b) Ge, S.; Green, R. A.; Hartwig, J. F. *J. Am. Chem. Soc.* **2014**, *136*, 1617.

a) Martin, A. R.; Nelson, D. J.; Meiries, S.; Slawin, A. M. Z.; Nolan, S. P. *Eur. J. Org. Chem.* **2014**, 3127. b) Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset, M. *J. Am. Chem. Soc.* **2014**, *136*, 7300.

Preparation of Ni(II) precatalyst

Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. *J. Am. Chem. Soc.* **2020**, *142*, 4500. Standley, E. A. and Jamison, T. F. *J. Am. Chem. Soc.* **2013**, *135*, 1585.

Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. J. Am. Chem. Soc. 2020, 142, 4500.

Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. J. Am. Chem. Soc. 2020, 142, 4500.

The character of bidendate phosphine ligand

M06/6-311+G(d,p)-SDD(Ni, Fe)//B3LYP/6-31G(d)-SDD(Ni, Fe)

pKa of Et₃N•HOTf = 12.5 pK_{BH+} of PhNH₂ = 28.5

electrodeficient Ar group More cationic Ni(II)-amine specie

Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. J. Am. Chem. Soc. 2020, 142, 4500.

The role of ferrocene backbone -my opinion-

facilitate the reductive elimination
decrease the pK_{BH+} of N-H proton ?
low binding ability of Et₃N ?

Relative binding energies to Ni(II) complex^{a)}

a) M06/6-311+G(d,p)-SDD(Ni, Fe)//B3LYP/6-31G(d) -SDD(Ni, Fe)

a) Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. *J. Am. Chem. Soc.* **2020**, *142*, 4500. b) Hayashi, T. et al₂₈ *J. Am. Chem. Soc.* **1984**, *106*, 158. c) Mansell, S. M. *Dalton Trans*. **2017**, 46, 15157.

Summary

- 1. electron deficient Ar group at C3'
 - 2. bulky Ad group at phosphine

future work : Expansion of the substrate scope to 2° aliphatic amine

Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. *J. Am. Chem. Soc.* **2018**, *140*, 4721. Liu, R. Y.; Dennis, J. M.; Buchwald, S. L. *J. Am. Chem. Soc.* **2020**, *142*, 4500.

1. electron deficient Ar group

2. wide bite angle of dppf liigand