Dinickel Catalyst with Redox Active Ligand

Literature Seminar

2020/01/25 Koichi Hagiwara

Prof. Christopher Uyeda

2005 BS; Columbia University (Prof. Ronald Breslow) 2011 Ph. D; Harvard University (Prof. Eric N. Jacobsen) 2011-2013 Postdoctoral fellow; California Institute of Technology (Prof. Jonas Peters) 2013-2018 Assistant Professor; Purdue University 2019- Associate Professor; Purdue University

Research topic: Catalysis at Metal-Metal Bonds

"studying new organometallic mechanisms in which two metals function cooperatively to accomplish bond activation reactions"

https://www.chem.purdue.edu/uyeda/index.html

Dinuclear Ni Complex with Redox Active Ligand

redox active ligand: charge -2 metal-metal bond: Niⁱ-Niⁱ

3

Chemical Species Including Metal-Metal Bond

М-М

covalent (or dative) interaction (d orbital interaction)
 →electronic state should be changed
 →different reactivity compared to mononuclear metal?

•examples of complexes with covalent M-M bond¹⁾²⁾

1) Powers, I. G.; Uyeda, C. ACS Catal. 2017, 7, 936. 2) Cotton, F. A. Inorg. Chem. 1965, 4, 334.

Additional Parameter Space in Catalyst Design

If a compound with matal-metal bond can be utilized as a catalyst, we might optimize following parameter:

Two-Electron Oxidative Addition at Metal-Metal Bond

Metal-Centered Redox (o-Bond)

cleavage of metal-metal bond

$$M'' \qquad X - Y \qquad X - M'' + 1 \qquad + \qquad + \qquad + \qquad Y - M'' + 1$$

Metal-Centered Redox (σ-Bond)

formation of metal–metal bond

Metal-Centered Redox (π/δ-Bond)

Redox Active Ligand

Muresan, N.; Chlopek, K.; Weyheemüller, T.; Neese, F.; Wieghaert, K. Inorg. Chem. 2007, 46, 5327.

7

Dimetal Species with Redox Active Ligand

redox active ligand →ligand-centered redox might stabilize metals in several oxidation states →new reactivity?

incorporation of 2 metals in close distance

→forming metal-metal bond
→new reactivity?

Synthesis of (^{*i*-Pr}NDI)Ni₂(C₆H₆)

Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. Inorg. Chem. 2014, 53, 11770.

Analysis of (^{*P*r}NDI)Ni₂(C₆H₆)

Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. Inorg. Chem. 2014, 53, 11770.

^{± ±}

Analysis of Radical Character

12

Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. Inorg. Chem. 2014, 53, 11770.

13

Application to Carbene Transfer Type Reaction

Catalytic Reductive Cyclopropanation

redox neutral cyclopropanation

Stoichiometric Cyclopropanation

Catalyst Optimization

Entry	Catalyst	Conversion [%]	Yield [%]
1	[^{LPr} NDI]Ni ₂ (C ₆ H ₆) (1)	>99	69
2	_	0	0
3	Ni(COD) ₂	35	2
4	[^{l-Pr} PDI]NiCl ₂ (4)	>99	19
5	[^{LPr} PDI]NiCl (5)	>99	20
6	[^{/_Pr} IP]Ni(COD) (6)	52	19
7	[BPY]Ni (COD) (7)	82	8
8	[^{LPr} DAD]Ni(COD) (8)	38	2
9	[^{LPr} NDI]Ni ₂ CI (2)	>99	76
10	[^{i-pr} NDI]Ni ₂ Cl ₂ (3)	>99	64

Substrate Scope

Uncertain Reaction Mechanism

Ni-Ni Carbene Complex

Maity, A. K.; Zeller, M.; Uyeda, C. Organometallics 2018, 37, 2437.

Strategy for Carbene Transfer Type Reactions

Johnson, K.; Weix, D. Science 2019, 363, 6429.

Optimization of Catalyst for Methylenecyclopropanation

Pal, S.; Zhou, Y.-Y.; Uyeda, C. J. Am. Chem. Soc. 2017, 139, 11686.

Substrate Scope

Pal, S.; Zhou, Y.-Y.; Uyeda, C. J. Am. Chem. Soc. 2017, 139, 11686.

Mechanistic Study

incomplete retention of stereochemistry (alkenes were not isomerized under reaction conditions) →stepwise mechanism →metallacycle intermediate?

Dinickel Catalyzed [4+1] Cycloaddition

Zhou, Y.-Y.; Uyeda, C. Science 2019, 363, 857.

Optimization of Catalyst for [4+1] Cycloaddition

important for reductive elimination?

Zhou, Y.-Y.; Uyeda, C. Science 2019, 363, 857.

Application

Zhou, Y.-Y.; Uyeda, C. Science 2019, 363, 857.

Application

Zhou, Y.-Y.; Uyeda, C. Science **2019**, 363, 857.

No Vinylcyclopropane [1,3]-Rearrangement

Mechanistic Study

Proposed Mechanism

DFT Caluculation

Zhou, Y.-Y.; Uyeda, C. Science 2019, 363, 857.

Plausible Explaination of *EZ* Selectivity

Summary

redox active ligand: charge -2 metal-metal bond: Niⁱ-Niⁱ

redox flexible catalyst cooperative effect of two Ni atoms

novel reactivity