Designing an Organocatalyst-Driven Peptide Synthesis

1

2019.11.16. Literature Session Takeuchi Aoi

Contents

Introduction

Main Paper

"Rational Design of an Organocatalyst for Peptide Bond Formation" (Handoko; Satishkumar, S.; Panigrahi, N. R.; Arora, P. S. *J. Am. Chem. Soc.* **2019**, *141*, 15977.)

Classical Reagent-Driven Amidation¹⁾

- applicable to various substrates
- low atom economy
- wasting much reagents and solvent
- "Non-classical" ways to construct amide bonds avoiding low atom economy has been pursued.

1) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029.

Concept of Atom Economy

e.g.) pericyclic reaction, sigmatropic rearrangement

e.g.) elimination reaction, condensing reaction

Low atom economy of amide forming reaction has been recognized as one of the most important issue in green chemistry field.²⁾

1) Trost, B.M. *Science* **1991**, *254*, 1471. 2) Constable, D. J.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer Jr, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A. *Green Chem.* **2007**, *9*, 411.

"Non-Classical" Amidation Approaches¹⁾

- 1) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029.
- 2) Harmand, T. J. R.; Murar, C. E.; Bode, J. W. Curr. Opin. Chem. Biol. 2014, 22, 115.
- 3) Molander, G. A.; Raushel, J.; Ellis, N. M. J. Org. Chem. 2010, 75, 4304.
- 4) Ishihara, K.; Kuroki, Y.; Hanaki, N.; Ohara, S.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 1569.
- 5) Blaise, E. E. Compt. Rend. 1901, 132, 38-41

Direct Catalytic Amidation

boronic acid derivatives¹⁾ ٠ Yamamoto (1996)²⁾

ZrCl₂Cp₂

<mark>Zn</mark>(O^tBu)₄

ZrCl₄

Ti(O[′]Pr)₄

 $Ti(OBn)_4$ $Ta(OMe)_5$

- metal calatyst ٠ Williams (2012)³⁾ Adolfsson (2012)⁴⁾
- organocatalyst Schmidt (2005)⁵⁾, Awasthi (2015)⁶⁾

1) Hall, D, G. Chem. Soc. Rev. 2019, 48, 3475.

Nb(OEt)₅

- 2) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.
- 3) Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 48, 666.
- Lundberg, H.; Tinnis, F.; Adolfsson, Chem. Eur. J. 2012, 18, 382. 4)
- 5) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453
- Mangawa, S. K.; Bagh, S. K.; Sharma, K.; Awasthi, S. K. Tetrahedron Lett. 2015, 56, 1960. 6)
- 7) Gnanaprakasam, B.; Milstein, D. J. Am. Chem. Soc. 2011, 133, 1682

Contents

Introduction

Main Paper

"Rational Design of an Organocatalyst for Peptide Bond Formation" (Handoko; Satishkumar, S.; Panigrahi, N. R.; Arora, P. S. *J. Am. Chem. Soc.* 2019, *141*, 15977.)

Author's Profile

Prof. Paramjit Arora

C.V.	
Born in New Delhi	
B.S. Chemistry	University of California at Berkeley
Ph.D. Chemistry	University of California at Irvine
	(advised by Prof. James S. Nowick)
Postdoctoral Fellow	California Institute of Technology
	(advised by Prof. Peter B. Dervan)
Professor	New York University
Decession Interacte	

Research Interests

- Develop a systematic approach for targeting protein-protein interactions with synthetic ligands
- RNA binding ligands design
- Organocatalyst for amide bond synthesis

Developing Catalytic-Driven Peptide Synthesis

• Arora's strategy = organocatalyst

(metal catalysts have risk of nonspecific coordination with amide bonds.)

It should have a significant impact to peptide-related industries to establish catalytic peptide synthesis which is waste-reducing and compatible with solid-phase.

requirement

- condensing agent-free reaction
- reduction the amount of amino acids
- no racemization
- compatible with Fmoc-based synthesis (for application to solid-phase synthesis)

Catalytic design was inspired by two biosynthetic precedents.

1. mimicking oxyanion holes in enzymes by urea catalysts

generally accepted mechanism for serine proteases¹ idealized depiction of amide bond formation catalyst

1) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.

2. utilizing amino acid thioesters to access peptide

biosynthesis of non-ribosomal peptides synthetases (NRPS)¹⁾

1) Süssmuth, D. R.; Mainz, A. Angew Chem., Int. Ed. 2017, 56, 3770.

utilizing amino acid thioesters to access peptide

biosynthesis of non-ribosomal peptides synthetases (NRPS)¹⁾

*PCP = Peptydil Carrier Protein

design biomimetic catalyst that efficiently

- activates carboxylic acids to the more electrophilic thioesters.
- would couple amino acid thioesters to a growing peptide chain.

1) Franke, J.; Hertweck, C.; Cell Chem. Biol. 2016, 23, 1179.

13

• Simple urea scaffolds are not sufficient to activation.

• A thiol group was included in 1b to engage a thioester through a thioester-exchange reaction.

Working Hypothesis for Enhancing Efficiency

positioning thiol group on a biphenyl moiety for better captures of tetrahedral transition-state introducing tertiary amine as Y scaffold for inducing a reversible catalyst-amine complex formation

Optimization of Catalyst

<u>catalyst</u>

Catalyst design was optimized as **4a**.

Application of Catalyst to Conversions of Fmoc-Amino Acid Thioesters to Dipeptide

³ 10-15% hydrolysis of Emoc-Ala-SPh was

^a 10-15% hydrolysis of Fmoc-Ala-SPh was observed

Proposed Catalytic Mechanism

utilizing amino acid thioesters to access peptide

biosynthesis of non-ribosomal peptides synthetases (NRPS)¹⁾

*PCP = Peptydil Carrier Protein

design biomimetic catalyst that efficiently

- activates carboxylic acids to the more electrophilic thioesters.
- would couple amino acid thioesters to a growing peptide chain.

¹⁾ Franke, J.; Hertweck, C.; *Cell Chem. Biol.* **2016**, 23, 1179.

Mukaiyama Reduction-Oxidation Condensation

concept:

perform a dehydration condensation by removing H_2O as 2[H] and [O] by the use of a combination of a weak reductant and oxidant¹⁾

condensation of carboxylic acid to thioester with disulfides and phosphine reagents²⁾

1) Mukaiyama, T.; Kuwajima, I.; Suzuki, Z. *J. Org. Chem.* **1963**, *28*, 2024. 2) Endo, T.; Ikenaga, S.; Mukaiyama, T. *Bull. Chem. Soc. Jpn.* **1970**, *43*, 2632.

Mukaiyama Reduction-Oxidation Condensation

condensation of carboxylic acid to thioester with disulfides and phosphine reagents

Oxidized dimer of 4a (denoted as 6-S) can be utilized as disulfides.

Working Hypothesis

Development of Dimerized Catalyst

Diselenide **6-Se** exhibited a significant overall rate enhancement over **6-S**.

1) Durek, T.; Alewood, P. F. Angew. Chem., Int. Ed. 2011, 50, 12042

Limiting Factor of Catalyst Availability

6'

Y = 22

not significant difference between 6-Se and 6

It is postulated that the oxidation of the selenol to the diselenide might be slow, thus limiting catalyst availability for the subsequent steps.

Linker Design for Accelerating Reoxidation

Optimization of Phosphine Reagent

optimization of phosphine

*PBu₃ was added in portions every 30 min.

Time Normalization Analysis (Burés Method ¹⁾)

Reaction Order Determination

and has no rate dependence on amine concentration.

Reaction Order Determination of PBu3

Tri-*n*-butylphosphine (d = -0.5)

Proposed Catalytic Mechanism

Application to Fmoc-Amino Acids Coupling

*PBu₃ was added in portions every 30 min

entry	dipeptides	conversion rate	entry	dipeptides	conversion rate
1	Fmoc-L-Ala-L-Ala-O <i>t-</i> Bu	97% (1 h)	8	Fmoc-L-Lys(Boc) -L-Ala-O <i>t-</i> Bu	90% (1 h)
2	Fmoc-L-Ala-L-Phe-O <i>t-</i> Bu	95% (1 h)	9	Fmoc-∟-Pro-∟-Ala-O <i>t-</i> Bu	90% (2 h)
3	Fmoc- L-Ala-L-Lys(Cbz) -O <i>t-</i> Bu	99% (1.5 h)	10	Fmoc-L-Arg(Pbf) -L-Ala-O <i>t-</i> Bu	99% (1.5 h)
4	Fmoc-L-Ala-L-Val-O <i>t-</i> Bu	99% (1 h)	11	Fmoc-L-Val-L-Ala-O <i>t-</i> Bu	92% (2 h) ^a
5	Fmoc-L-Ala-L-Pro-O <i>t-</i> Bu	94% (2 h)	12	Fmoc-L-Aib-L-Ala-O <i>t-</i> Bu	91% (2 h)
6	Fmoc-L-Ala-L-Trp-NH ₂	99% (1 h)	13	Fmoc-∟-Phe-∟-Pro-O <i>t-</i> Bu	82% (2 h) ^a
7	Fmoc-L-Phe-L-Ala-O <i>t-</i> Bu	90% (1 h)			

^a: Less than 2 % epimerization was observed. Aib: α -aminoisobutyric acid

Application of Designed Catalyst to Solid-Phase Peptide Synthesis

Summary

- compatible with a diverse range of Fmoc-amino acid substrates with insignificant epimerization
- provided a lead toward organocatalytic peptide synthesis without excess reagents
- exhibited a promise for solid-phase peptide synthesis

Future Perspective

explore phosphine reagents that are less prone to oxidation

- evaluating other phosphine derivatives
- exploring the recycling of the phosphine oxide product

- develop solid-phase peptide synthesis(SPPS) methodology
 - further optimization of catalyst design to fit SPPS conditions
 - substrate scope
 - molecular sieves-free system

The overall aim of this work is to develop organocatalysts that can replace standard coupling agents and reduce waste in peptide synthesis.