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Problem Session 

Sep 14, 2019  

Hiroaki Itoh 

 

1. Results of ESI-MS3 (MS/MS/MS) analysis of rapamycin (1) are displayed.  Please provide a structure 

of 3 and a possible generation mechanism of 3.   

 

 

 

2. Please propose an effective chemical modification method for MS fragmentation (high-energy 

collision-induced dissociation)-based determination of the amino-acid sequence of peptide 4.  Please 

take notice that leucine and isoleucine must be discriminated.  Determination of stereochemistry of each 

amino acid is unnecessary. 
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Mass spectrometry-based structure analysis 

 

1. Introduction 

Mass spectrometry-based techniques become more important and helpful for structure determination, 

which permits the structure analysis by using a small (or limited) amount of sample (minimum scale: fmol–

amol (10-15–10-18 mol)) 

 

Current application of tandem mass spectrometry (MS/MS, MS3 etc) for structure determination 

◼ Omics (e.g. proteomics,1,2 metabolomics3)  

◼ Molecular biology (e.g. investigation of biologically active endogenous peptides*), chemical biology 

(e.g. target identification of natural products) 

*Structure determination using only genome and transcriptome is still difficult due to the lack of 

information on peptide/protein processing and posttranslational modification 

◼ Structure determination of natural products (combination with other analytical methods)4 

◼ Direct “decoding” process of randomly synthesized compound library5 

 

 

Figure 1. Comparison of coding and decoding methods for randomly synthesized compound library. 

 

◼ Tandem MS-based analysis as the “decoding” process allows only one-to-one relationship between 

the structure and the interpretation of fragmentations. 

 

Question: What are the current status and limitation of tandem MS-based structure analysis? 

Aim: Understanding of the details of MS/MS fragmentation (reaction) on soft ionization techniques (ESI 

and MALDI) with collision-induced dissociation (CID) 
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2. Methods 

2-1. Mass spectrum degradation (MSD) method for determining substructures: 

◼ collision-induced dissociation (CID) 

◼ post source decay (PSD, MALDI-TOF (reflectron) specific technique) 

 

2-2. Collison-induced dissociation 

Degradation induced by collision of a precursor ion with an inert collision gas (He, Xe, Ar, N2 etc.) 

 

 

Figure 2. MS/MS analysis using collision-induced dissociation.  Multiple tandem mass spectrometry (e.g. 

MS3, problem 1) is possible by further degradation/separation/detection of product ions. 

 

The condition of CID affects fragmentation pattern. 

◼ high-energy CID (with magnetic sector, TOF/TOF system): kinetic energy of precursor ions = keV 

(mainly induces electronic excitation) 

◼ low-energy CID (with quadrupole, ion-trap system): kinetic energy of precursor ions = ~100 eV  

(vibration excitation) 

 

Pros and cons 

High-energy CID: complex spectra derived from charge-remote fragmentation (multiple cleavage) 

Low-energy CID: favors charge-driven fragmentation (selective cleavage) 

 

 

3. Analysis and understanding of fragmentation on tandem MS spectrometry 

3-1. Basics of fragmentation by CID 

Solvent-free and unimolecular reaction must be considered.  Classification based on involvement of 

a proton or a charge is reasonable for the fragmentation analysis. 

 

Figure 3. Classification of fragmentation based on a charge.6,7 
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◼ The reaction in positive ion mode is depicted here. 

1. Charge migration fragmentation/charge-directed fragmentation (e.g. salanin8) 

 

Figure 4. Structure of salanin and observed product ions in ESI-quadrupole/Orbitrap-MS/MS analysis. 

 

Figure 5. Possible generation mechanisms of the product ion (m/z = 147.0804) 

 

2. Charge retention fragmentation/charge-remote fragmentation (e.g. retro Diels-Alder reaction, 

aromatic eliminations (problem 1)) 

Fragmentation pathways of protonated peptides have been well investigated.  

The basic concept of peptide fragmentation on MS/MS is described in the next section for better 

understanding of MS/MS fragmentation pathways. 
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3-2. Nomenclature of product ions of peptides 

 

Figure 6. Nomenclature of product ions of peptides on MS/MS analysis.  In the case of d- and w-ions of 

C-disubstituted amino acids, two product ions can be generated (problem 2). 

 

 

Figure 7. Possible structures of product ions.9,10 

 

◼ Cleavage of C-carbonyl C (a- and x-ions): charge-remote fragmentation by high-energy CID 

a-Ions can also be generated from the degradation of b-ions 

◼ Cleavage of carbonyl C–N (b- and y-ions): collision-induced dissociation (dominantly occurs 

by low-energy CID)  

◼ Cleavage of N–C (c- and z-ions): electron transfer dissociation (ETD)11 and electron capture 

dissociation (ECD)12 

◼ d-, v-, and w-ions: degradation from other-type ions generated via charge-remote fragmentation 
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a–c, x–z ions: information of sequence 

d and w ions: information of side chains 

 

3-3. “Mobile proton model” for charge-directed fragmentation of peptides 

(Low-energy CID is considered here) The most comprehensive model to describe how protonated 

peptides dissociate and form b- and y-ions: fragmentation requires the transfer of a proton from a basic 

site to the amide nitrogen13,14,15,16 

Note: solvent-free and unimolecular reaction 

 

 

Figure 8. Proposed mechanisms of generation of b- and y-ion based on mobile proton model. 

 

Rationale of mobile proton model 

◼ H/D exchange experiment17 indicated that complete randomization of all hydrogen atoms attached 

to N and O atoms occurs upon collisional activation prior to the dissociation. 
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◼ IR-MPD spectroscopy (infrared multiple-photon dissociation)18 of CID fragments indicated that 

gradual decrease in the relative population of oxazolone-protonated b ion and corresponding 

increase in N-terminal-protonated b ion.,  

◼ Computational analysis (B3LYP/6-31G(d), RRKM method) of a model protonated peptide 

(protonated H-Gly-Gly-Gly-OH)19 supported the mechanisms (proton transfer from OH to N via 

four-centered transition state should have high barrier/although oxazolone ring formation from 

possible conformation 16’ was tried, geometry optimization afforded only bond-cleaved 16).20 

 

 

4. Answer for problem 1 

(low-energy CID is considered)21,22,23 
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◼ The loss of aromatic molecule from other polyene compounds was also reported. 

 

Table 1. Specific examples of aromatic loss of polyene compounds24 

compound precursor ion product ion difference 

amphotericin B (25) 946.4746 [M+Na]+ 868.4298 C6H6 

rapamycin (1) 564.328025 440.2413 C7H8 

    

Figure 9. ESI-FTICR-MS/MS of amphotericin B (25).  MS/MS chart of 25 was taken from ref 24. 

 

5. Answer for problem 2: introduction of a cation (e.g. alkyl ammonium salt,26 phosphonium salt)27 or 

strong basic group (guanidine moiety)28 to 4 for efficient generation of d-ions to discriminate the leucine 

and isoleucine residues 

 

Figure 10. Specific examples reported in the literatures for N-terminal modification. 

 

Figure 11. Specific example reported in the literature (28).28 
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◼ Efficient d- (or w) ion generation via charge-remote fragmentation is necessary. 

 

Figure 12. Generation of d-ions of leucine and isoleucine residues by high-energy CID29 

 

 

◼ To efficiently induce charge-remote fragmentation, competitive charge-directed fragmentations 

should be suppressed (see also Figure 3).  As possible methods, followings could be considered: 

 

1. exclusion of mobile proton from the ion of interest (deletion of cationic groups and addition of the 

cation) 

2. capture of a mobile proton by introducing strong base 
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◼ An arginine residue effectively induces charge-remote fragmentation.30 

magnitude of the effect on the induction of charge-remote fragmentation: 

arginine > lysine, histidine 

 

Proton affinity (basicity of gas phase)30,31 

 

Proton affinity for the reaction: B + H+ = BH+ 

is defined as -H (negative of the reaction enthalpy at 25 °C) 

 

a                                            b 

      

Figure 13. (a) MS/MS spectrum of 4. (b) MS/MS spectrum of 5.  Charts were taken from ref 28. 

 

6. Misc 

◼ Resolution = high-energy CID < low-energy CID 

To accurately discriminate lysine and glutamine residues, fragmentation analysis using low-energy 

CID is preferred.   

◼ Even in the presence of arginine, b- and y-ions can be generated.  In that case, alternative 

pathways are proposed (involvement of a C-terminal carboxylic acid to form salt bridge/acid 

anhydride or involvement of an amide proton of -COH=N-).32 

◼ By using cations such as 26 and 27 with low-energy CID, fragmentation patterns are limited and 

intensities of b- and y-ions decrease due to the unavailability of the mobile proton. 

◼ In several cases, diastereomers provided different fragmentation patterns (product ion species and 

their intensities).33 

Intensity of signals are 

magnified 30 times 
Intensity of signals are 

magnified 15 times 
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