Photochirogenesis using photosensitizers

Literature Seminar 2019/6/29 Takahiro Watanabe

Contents

1. Introduction

2. Catalytic deracemization of chiral allenes

(Bach et al. *Nature* **2018**, *564*, 240.)

3. Enantioselective formation of

3-cyclopropylquinolones

(Bach et al. Angew. Chem. Int. Ed. 2019, 58, 3538.)

Contents

1. Introduction

2. Catalytic deracemization of chiral allenes

(Bach et al. *Nature* **2018**, *564*, 240.)

3. Enantioselective formation of 3-cyclopropylquinolones

(Bach et al. Angew. Chem. Int. Ed. 2019, 58, 3538.)

Importance of enantiomerically pure chiral compounds

Biological activity is different in both enantiomers: ex.

(S) - thalidomide -> Hypnotic effect

(R) - thalidomide-> Teratogenicity

Intensity of medicinal activity is different between enantiomers: ex.

Ofloxacin (racemic)

Levofloxacin (contains only (S) enantiomer)

-> (S) has 10~20 times stronger effect than (R)

-> Enantioselective synthesis is needed for social demand and assists the development of organic synthesis.

The way to obtain enantioenriched compounds

- 1. Starting from optically active compounds (ex. chiral pool)
- 2. Using asymmetric reagent / catalyst

- 3. Resolution
- kinetic resolution

- dynamic kinetic resolution
- These methods are applied to substrates in ground state.

Photochirogenesis

"Photochirogensis" = Photo + chiro + genesis

-> photochemical induction of molecular chirality or new stereogenic centers

First study in 1965 ¹⁾:

previous LS:

"Absolute Asymmetric Photoreaction" 170304 LS Masanori NAGATOMO

((-) - bornyl)

1) Hammond et al. J. Am. Chem. Soc. **1965**, 87, 3256. 2) Inoue et al. Nature **1989**, 341, 225.

Supramolecular approaches

other supramolecular or biomolecular are also used. (ex. zeolite, bovin serum albumin)

Principle of sensitization

Triplet energy transfer can be shown as:

 $S_0(E) + T_1(S) \rightarrow T_1(E) + S_0(S)$ (Spin multiplicity is maintained before and after energy transfer.)

We want to obtain T₁(E) and sensitizers are effective when 1) Φ of ISC of sensitizer is high.

2) Φ of ISC of substrate is low.

Ideally, energy-level distribution is $T_1(E) < T_1(S) < S_1(S) < S_1(E)$

S₁: lowest excited singlet state

T₁: lowest excited triplet state

ISC: intersystem conversion

Φ: quantum yield

 $S_0(S)$: S_0 of sensitizer

 $T_1(E)$: T_1 of substrate

 $T_1(S)$: T_1 of sensitizer

Energy transfer

Förster (Resonance) Energy Transfer

Dexter Energy Transfer

- (1) $S(S_1) + E(S_0) \rightarrow S(S_0) + E(S_1)$ singlet energy transfer
- (2) $S(T_1) + E(S_0) \rightarrow S(S_0) + E(T_1)$ triplet energy transfer
- (3) $S(T_1) + E(S_0) \rightarrow S(S_0) + E(S_1)$
- $(4) S(S_1) + E(S_0) \rightarrow S(S_0) + E(T_1)$

Förster's theory- dipole-dipole interaction

Spin has to be allowed transition in both S and E. \rightarrow (1) obey the theory, but (2) don't.

Dexter's theory- exchane energy transfer

Sum of spin multiplicity has to be conserved. \rightarrow (2) obey the theory.

$$k_{\rm EnT} = K \cdot J \cdot e^{-\frac{2R_{\rm DA}}{L}}$$

k decreases exponentially as R_{DA} increases.

 \rightarrow Control of R_{DA} is important for efficient triplet sensitization.

 k_{EnT} : rate constant for Dexter's energy transfer

K: a parameter for specific orbital interaction between donor and acceptor

J: spectral overlap between donor emission and acceptor absorption

L: Bohr radius

Contents

1. Introduction

2. Catalytic deracemization of chiral allenes

(Bach et al. *Nature* **2018**, *564*, 240.)

3. Enantioselective formation of 3-cyclopropylquinolones

(Bach et al. Angew. Chem. Int. Ed. 2019, 58, 3538.)

Thorsten Bach

1989-1991 Dr. rer. nat. (Kekule Fellowship) (Univ. Marburg, M.T. Reetz)

1991-1992 Postdoctoral Research (NATO Fellowship) (Harvard Univ., D.A.Evans)

1992-1996 Independent Research (Habilitation) (Univ. Munster)

1997-2000 Professor (Universitat Marburg)

since 2000 Professor (TU Munich)

Research Interests:

- 1. Natural Product Synthesis
- 2. Development of Catalytic Methods (ex. direct C-C bond formation by C-H activation reactions)
- 3. Photochemistry (Today's Topic)

allene

Known to undergo a configuration switch upon triplet-sensitized exitation¹⁾:

Allene isomerization occurs via an achiral planar triplet intermediate.³⁾

- 1) Morrison et al. J. Chem. Soc. D 1971, 679. 2) Weiss et al. J. Am. Chem. Soc. 1973, 95, 6482.
- 3) Schmittel et al. J. Org. Chem. 2009, 74, 5850.

Time Flows

Thioxanthone sensitizer

1,5,7-trimethy-3-azabicyclo[3.3.1]nonen-2-one skeleton was found to be efficient chiral template.¹⁾

-> Hydrogen bonding with the substrate

Benzophenone catalyst 2:

worked well as a catalyst for enantioselective PET reactions²⁾ but less suitable for triplet sensitization (rigid oxazole unit is introduced for stereocontrolling);

photoexcited benzophenone is <u>not completely planar</u>. -> Dissociation of the substrate?

Xanthone catalyst 3: 3)
Completely flat -> favor substrate binding
Triplet energy of parent compounds xanthone is highr
than that of benzophenone (310kJ/mol vs. 287 kJ/mol)
-> Energic preference compared to 2

Thioxanthone catalyst 4: ⁴⁾
bathochromic shift in UV/Vis spectra compared to 3
-> Less aggressive towards hydrogen abstraction than 3

Higher stability for irradiation than 3

- 1) Bach et al. J. Am. Chem. Soc. 1999, 121, 10650. 2) Bach et al. Nature 2005, 436, 1139.
- 3) Bach et al. Angew. Chem. Int. Ed. 2009, 48, 6640. 4) Bach et al. Angew. Chem. Int. Ed. 2014, 53, 4368.

Synthesis of thioxanthone catalyst

Bach et al. Angew. Chem. Int. Ed. 2014, 53, 4368.

Optimization of conditions

Entry	c (mM)	solvent	<i>X</i> (mol%)	time (h)	ee (%)
1	5.0	PhCF ₃	5.0	0.25	72
2	5.0	PhCF ₃	5.0	0.5	88
3	5.0	PhCF ₃	5.0	1	94
4	5.0	PhCF ₃	5.0	4	94
5	10.0	PhCF ₃	2.5	4	95
6	10.0	PhH	2.5	4	97
7	10.0	MeCN	2.5	4	95
8	10.0	MeOH	2.5	4	10

Substrate Scope

Plausible mechanism for light-activated deracemization

Ka: association constant

 Φ : quantum yield

- a. Formtion of complex
- b. Excitation of T and generation of triplet state
- c. Energy transfer

- d. Releasing excited S* or R*
- e. Interconversion in excited states
- f. Relaxation to ground state
- \rightarrow The difference of Ka and Φ between both enantiomers generates ee.

Generation of ee

Contents

1. Introduction

2. Catalytic deracemization of chiral allenes

(Bach et al. *Nature* **2018**, *564*, 240.)

3. Enantioselective formation of 3-cyclopropylquinolones

(Bach et al. Angew. Chem. Int. Ed. 2019, 58, 3538.)

Background: intramolecular [2+2] photocycloaddition

1. Substrate is positioned as above;
Hydrogen bonding between the sensitizer and catalyst determines the position.

sens*

2. Side chain approaches to avoid the sensitizer and [2+2] cycloaddition occurs.

Absolute configuration is counterintuitive?

**sensitizer is omitted for clarity.

Though steric repulsion between side chain and the sensitizer was larger in

Key observation

- Almost identical E_T value between 1 and 2
- -> Both will be sestized.
- 2 is also generated from racemic 2. (below figure)

Bach et al. Angew. Chem. Int. Ed. 2019, 58, 3538.

2 (racemic)

Explanation of formation of preferred enantiomer H

4
$$K_a = 253 \pm 14 \text{ M}^{-1}$$

$$K_a = 2300 \pm 150 \text{ M}^{-1}$$

cyclopropane formation favors formation of *ent*-6a while sensitization favors formation of 6a.

-> 6a was given in moderate ee.

Optimization of conditions

hν (2	S. (10 mol%) (λ nm), time mp, solvent BnO H	NH O (sens.)
-------	--	-----------------

							1 - 1
Entry	y λ (nm)	sens.	temp. (C°)	time (h)	solvent	yield (%)	ee (%)
1	300	no	20	0.75	PhCF ₃	90	-
2	350	no	20	0.75	PhCF ₃	88	-
3	420	no	20	4	PhCF ₃	-	-
4	420	yes	20	0.5	PhCF ₃	85	33
5	420	yes	-25	1.5	PhCF ₃	90	55
6	420	yes	-65	3	PhCF ₃ /HFX ³ = 1:2	* 91	55
7	420 (2 W LED)	yes	-25	3.5	PhCF ₃	85	43
8	420	yes	-25	5	MeCN	33 (brsm)	3

HFX* = hexafluoro-meta-xylene

Substrate scope

Entry	X	R, R	time (h)	yield (%)	ee (%)
1	BnO	Me, Me	1	91	55
2	MeO	Me, Me	1.5	96	53
3	MeO	-(CH ₂) ₄ -	1	95	44
4	MeS	Me, Me	2	88	40
5	MeO ₂ S	Me, Me	1.5	94	32
6	TfO	Me, Me	1	91	47
7	н	Me, Me	1	88	45
8	Me	Me, Me	2	88	47
9	Ph	Me, Me	3	88	37

Summary

Photochirogenesis using thioxanthone sensitizers by Bach's group:

1. Deracemization of allene

2. Enantioseletive di- π -methane rearrangement:

