α-Fluorination of amide and stereodivergent synthesis of 1,4-dicarbonyls by Nuno Maulide's group

2019.06.22 Toshiya Nagai

## Contents

- 1. Introduction
- 2.  $\alpha$ -Fluorination of amide with nucleophilic fluorine<sup>1)</sup>



3. Stereodivergent synthesis of 1,4-dicarbonyls by sulfonium rearrangement<sup>2)</sup>



1) Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. *Nature Chemistry* **2019**, *11*, 329. 2) Kaldre, D.; Klose, I.; Maulide, N. *Science* **2018**, *361*, 664.

# **Prof. Nuno Maulide**

#### Career:



2003-2004 : Master's Degree, the Ecole Polytechnique
2004-2007 : Ph. D, the Université catholique de Louvain (Prof. István E. Markó)
2007-2008 : Postdoc, Stanford University (Prof. Barry M. Trost)
2009-2013 : Group Leader, Max-Planck Institute for Coal Research
2013- : Full Professor, the University of Vienna

Awards: Bayer Early Excellence in Science Award (2012), Heinz Maier-Leibnitz Prize (2013), EurJOC Yong Researcher Award (2015), Elisabeth Lutz Award (2016), Scientist of the Year in Austria (2019), etc.

#### **Research topic:**

Dvelopment of new reactions from amide, ynamide or sulfur (IV) and total synthesis 1. Amide or ynamide activation



# Fluorine Containing Biologically Active Compounds



• 180428\_LS\_Takahiro\_Watanabe (Enantioselective fluorination of alkene)

Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

# **Previous Approaches to Indirect Fluorination of Amides**

1. Lectka's work<sup>1)</sup>



<u>Plobrems</u>: Preparation of substrate (steps or difficulty), Functional group tolerance

1) Paull, D. H.; Scerba, M. T.; Alden. D. E.; Widger, L. R.; Lectka, T. *J. Am. Chem. Soc.* **2008**, *130*, 17260. 2) Dong, X.; Yang, W.; Hu, W.; Sun, J. *Angew. Chem. Int. Ed.* **2015**, *54*, 660.

#### Contents

#### **1. Introduction**

2.  $\alpha$ -Fluorination of amide with nucleophilic fluorine<sup>1)</sup>



3. Stereodivergent synthesis of 1,4-dicarbonyls by sulfonium rearrangement<sup>2)</sup>



1) Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. *Nature Chemistry* **2019**, *11*, 329. 2) Kaldre, D.; Klose, I.; Maulide, N. *Science* **2018**, *361*, 664.

# A New Approach for α-Fluorination of Amide

• Previous methods<sup>1),2)</sup>



1) Paull, D. H.; Scerba, M. T.; Alden. D. E.; Widger, L. R.; Lectka, T. J. Am. Chem. Soc. 2008, 130, 17260.

2) Dong, X.; Yang, W.; Hu, W.; Sun, J. Angew. Chem. Int. Ed. 2015, 54, 660.

3) Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. Nature Chemistry 2019, 11, 329.

#### Movassaghi's Synthesis of Pyrimidine Derivatives



Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254.

# Maulide's $\alpha$ -Arylation of Amide



9

2-l-py

nitroethane LNO

**NPO** = 4-nitropyridine-*N*-oxide

LNO = 2,6-lutidine-*N*-oxide, PNO = pyridine-*N*-oxide DCPO = 2,6-dichloropyridine-*N*-oxide

MeCN

MeCN

**2-I-py** 

2-I-py

4

5

Kaiser, D.; Torre, A.; Shaaban, S.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 5921.

**PNO** 

DCPO

52%

43%

21%

# **Application to α-Fluorination of Amide**



Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. Nature Chemistry 2019, 11, 329.



Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. Nature Chemistry 2019, 11, 329.

#### **Preparation of Fluorinated Analogues**



Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. Nature Chemistry 2019, 11, 329.

## Summary-1



Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. Nature Chemistry 2019, 11, 329.

# Contents

- 1. Introduction
- 2.  $\alpha$ -Fluorination of amide with nucleophilic fluorine<sup>1)</sup>



3. Stereodivergent synthesis of 1,4-dicarbonyls by sulfonium rearrangement<sup>2)</sup>



1) Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. *Nature Chemistry* **2019**, *11*, 329. 2) Kaldre, D.; Klose, I.; Maulide, N. *Science* **2018**, *361*, 664.

# Natural Products and Drug Scaffolds Containing 1,4-Dicarbonyl Moiety



# **Previous Syntheses of 1,4-Dicarbonyls**



<sup>1.</sup> Morikawa, T. et al. Bioorg. Med. Chem. 2002, 10, 2569. 2. Hosomi, A. et al. Org. Lett. 2001, 3, 2591. 3. Ryter, K; Livinghouse, T. J. Am. Chem. Soc. 1998, 120, 2658. 4. Wong, W. Y. et al. Tetrahedron 1999, 55, 13983. 5. Sulsky, R. et al. Bioorg. Med. Chem. **2007**, *17*, 3511.

#### **Baran's Synthesis of 1,4-Dicarbonyls**



DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc 2008, 130, 11546.

# **Stereodivergent Approach for The Enantio- and Diastereoselective Synthesis of 1,4-Dicarbonyls**



# 1,3-Chirality Transfer by Slufonium [3,3]-Sigmatropic Rearrangement



Marino, J. P.; Perez, A. D. J. Am. Chem. Soc. 1984, 106, 7644.

#### **Unsuccessful Attempts of 1,4-Chirality Transfer**



Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; González, L.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 2212.

# 1,4-Chirality Transfer by Slufonium [3,3]-Sigmatropic Rearrangement



Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; González, L.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 2212.

## **Enantioselectivity of 1,4-Chirality Transfer**



Kaldre, D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; González, L.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 2212.

# Attempted Synthesis of 1,4-Dicarbonyls by Sulfonium Rearrangement



Kaldre, D.; Klose, I.; Maulide, N. Science 2018, 361, 664.

# Optimization of Synthesis of 1,4-Dicarbonyls by Sulfonium Rearrangement





| entry | X  | additive                                   | yield | dr   | entry | X   | additive, temp  | yield | dr    |
|-------|----|--------------------------------------------|-------|------|-------|-----|-----------------|-------|-------|
| 1     | 50 | none                                       | 12%   | 10:1 | 6     | 50  | entry 4, –10 °C | 68%   | 15:1  |
| 2     | 50 | H <sub>2</sub> O (3 eq.)                   | 34%   | 11:1 | 7     | 50  | entry 4, –30 °C | 55%   | 20:1  |
| 3     | 50 | H <sub>2</sub> O, <i>i</i> -PrCHO (3 eq.)  | 67%   | 8:1  | 8     | 100 | entry 4         | 69%   | 5.5:1 |
| 4     | 50 | H <sub>2</sub> O, <i>i</i> -PrCHO (6 eq.)  | 80%   | 8:1  | 9     | 35  | entry 4         | 82%   | 8:1   |
| 5     | 50 | H <sub>2</sub> O, <i>i</i> -PrCHO (10 eq.) | 79%   | 8:1  | 10    | 20  | entry 4         | 63%   | 16:1  |

\*The reactions were conducted at 0 °C, except for entry 6 and 7.

#### Substrate Scope for Syn-1,4-dicarbonyls-1





 $R^{1} = Cy : 78\%, dr 8:1, ee >98\%$   $R^{1} = Ph : 54\%, dr 13:1, ee >98\%$   $R^{1} = 3,4 \text{-dichloro phenyl} : 66\%, dr 12:1, ee >99\%$   $R^{1} = 4\%^{7} CO_{2}Me : 81\%, dr 7:1, ee >96\%$  $R^{1} = 4\%^{7} CN : 83\%, dr 8:1, ee >98\%$ 



$$R^{1} = 2$$
  $Ph$  : 78%, dr 16:1, ee >99%  
 $R^{1} = 2$   $Ph$  : 88%, dr 15:1, ee >99%

#### Substrate Scope for Syn-1,4-dicarbonyls-2



Kaldre, D.; Klose, I.; Maulide, N. Science 2018, 361, 664.

#### Substrate Scope for Anti-1,4-dicarbonyls





 $R^{1} = Cy : 80\%, dr 8:1, ee >99\%$   $R^{1} = Ph : 60\%, dr 14:1, ee >99\%$   $R^{1} = 5\%, CO_{2}Me : 62\%, dr 8:1, ee >99\%$   $R^{1} = 5\%, Ph : 75\%, dr 8:1, ee >99\%$ 



$$R^1 = 2^{Ph} : 76\%^*, dr 11:1, ee >99\%$$

\*The modified condition (TFA/H<sub>2</sub>O) was used.

#### **Access to All Stereoisomers**



#### **Synthesis of All-carbon Quaternary Products**



#### **Scope of Ynamides and Vinyl Sulfoxides**



# Summary-2





Ο

# Appendix

#### **Charge-Accelerated Sulfonium Rearrangement**



Peng, B.; Geerdink, D.; Farés, C.; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462.

## Maulide's α-Arylation of Amide



Kaiser, D.; Torre, A.; Shaaban, S.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 5921.