Works by Prof. Bill Morandi - Isofunctional Reactions -

Literature Seminar 2019/01/12 Koichi Hagiwara

Today's contents

1. Introduction of "isofunctional reactions"

2. Shuttle reactions - (retro-)hydrocyanation -

3. Metathesis reations - C-S or C-P bond -

Prof. Bill Morandi

2006 BS; at the ETH Zurich in Biology

2008 MS; at the ETH Zurich in Chemical Biology

2012 Ph. D; at the ETH Zurich in Organic Chemistry (under Prof. Erick M. Carreira)

2012-2014 Postdoctoral fellow; at California Institute of Technology (under Prof. Robert H. Grubbs)

2014-2018 Group leader at Max-Planck-Institut fur Kohlenforschung

2018- Associate Professor (with tenure) at the ETH Zurich

3 topics are described in his home page (http://morandi.ethz.ch/research.html)

- 1. Shuttle Catalysis
- 2. Aliphatic C-O Bond Activation
- 3. Direct Catalytic Synthesis of Unprotected Amines

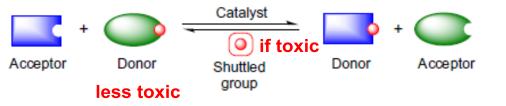
Concept of "Isofunctional Reactions"

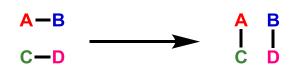
- definition of "isofunctional reactions" by Morandi
- → the number and type of functional groups are conserved throughout the reaction. (one of the reversible isodesmic reactions)
- •illustrative example of an isofunctional, isodesmic reaction

same bonds and same functional groups

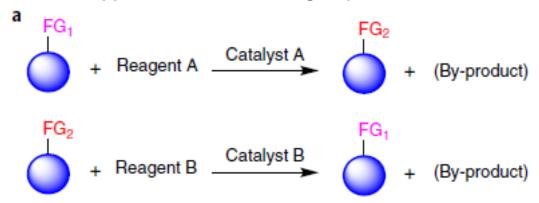
•illustrative example of a non-isofunctional, isodesmic reaction

same bonds but different functional groups


Classification of "Isofunctional Reactions"

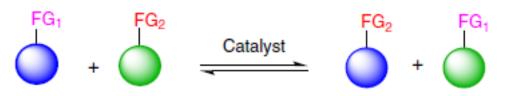

- definition of "isofunctional reactions" by Morandi
- → the number and type of functional groups are conserved throughout the reaction. (one of the reversible isodemic reactions)
- → classified in 3 groups
- 1. isomerization and rearrangement reaction (unimolecule)

2. shuttle reaction (more than 2 molecules)


3. metathesis reaction (more than 2 molecules)

Advantage of "Isofunctional Reactions"

•traditional approach for functional group interconversion



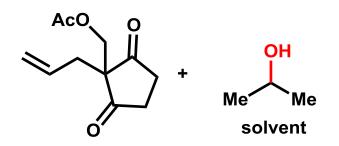
△G<<0→irreversible process

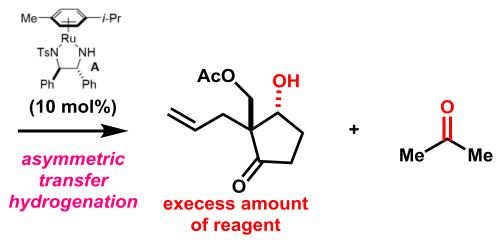
completely diffrerent reaction conditions

unstable reactive reagent→toxic

•functional group metathesis

∆G≈0→reversible process similar reaction conditions


Driving Force of "Isofunctional Reactions"


1. isomerization and rearrangement reaction

strain release

2. shuttle reaction

Noyori, R. et al. *J. Am. Chem. Soc.* **1995**, *117*, 7562. Inoue, M. et al. *Org. Lett.* **2018**, *20*, 130.

3. metathesis reaction

Today's contents

1. Introduction of "isofunctional reactions"

2. Shuttle reactions - (retro-)hydrocyanation -

3. Metathesis reations - C-S or C-P bond -

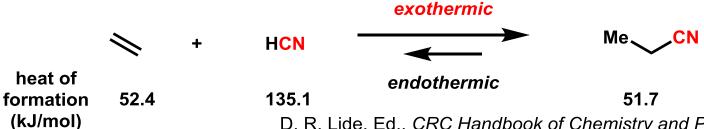
Successful Results of "Shuttle Reaction"

88%

(2 eq.)

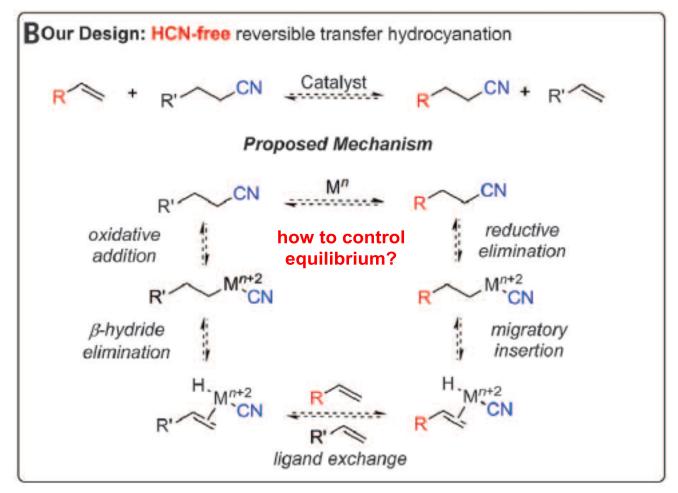
Nat. Chem. **2017**, 9, 1105.

Problems of Transformation of Alkenes to Nitriles


•traditional approach from alkenes to nitriles

problems

- 1. HCN is a toxic and explosive gas
 - → replaced to less volatile surrogates (ex. TMSCN, acetone cyanohydrin), but still toxic


de Greef, M.; Breit, B. Angew. Chem. Int. Ed. 2009, 48, 551.

2. retro-hydrocyanation is difficult (therodynamically uphill)

D. R. Lide, Ed., *CRC Handbook of Chemistry and Physics, Internet Version 2005* (CRC Press, Boca Raton, FL,**2005**)

Design of HCN-free Reversible Transfer Hydrogenation

oxidative addition to aliphatic C-CN bond is somewhat difficult \rightarrow Ni(0) was used in the presence of Lewis acid

Optimization of Reaction Conditions

A Thermodynamic Challenge: How can we drive the equilibrium to obtain 1 or 2 selectively?

Me +
$$R^1$$
 cat. Ni(COD)₂, DPEphos cat. AlMe₂Cl R^2 Toluene, 16 h

B Hydrocyanation: Formation of gaseous disubstituted alkene best driving force

using large excess of reagent

(Le Chatelier's priciple)

C Retro-Hydrocyanation: Strained alkenes best driving force

driving force: strain release of norbornene and norbornadiene

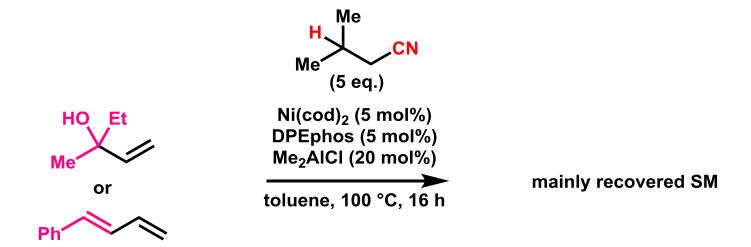
cf. Murphy, S. K.; Park, J.-W.; Cruz, F. A.; Dong, V. M. Science 2015, 347, 56. See also Fujino-kun's LS on 181027.

Substrate Scope - Hydrocyanation -

86% (*I*:*b* = 81:19), 100 °C 73%* (*I*:*b* = 81:19), 100 °C *1.5 eq of hydrocyanide donor

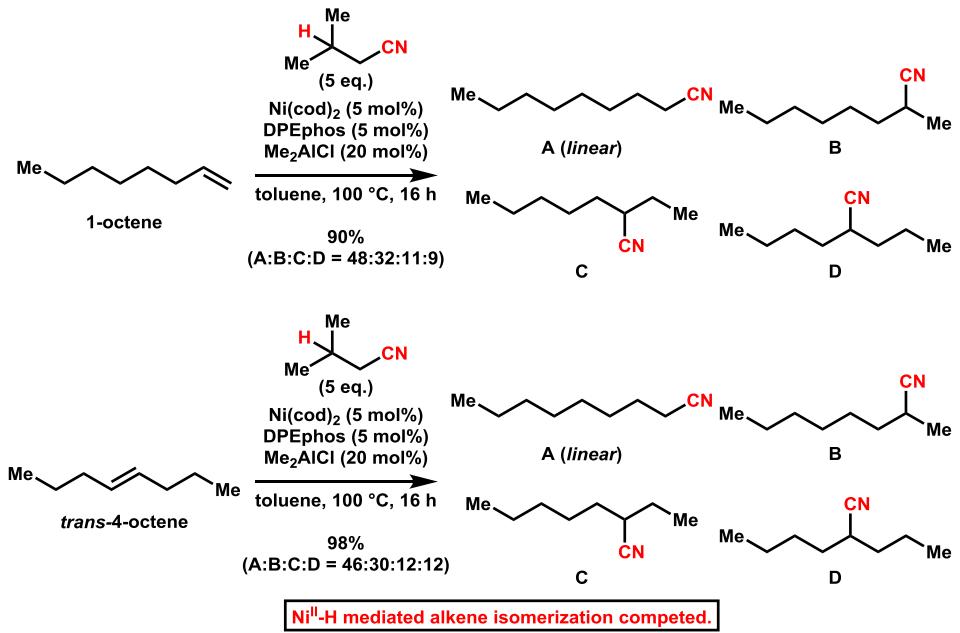
97% (*I:b* > 95:5), 130 °C

91% (*I*:*b* > 95:5), 130 °C

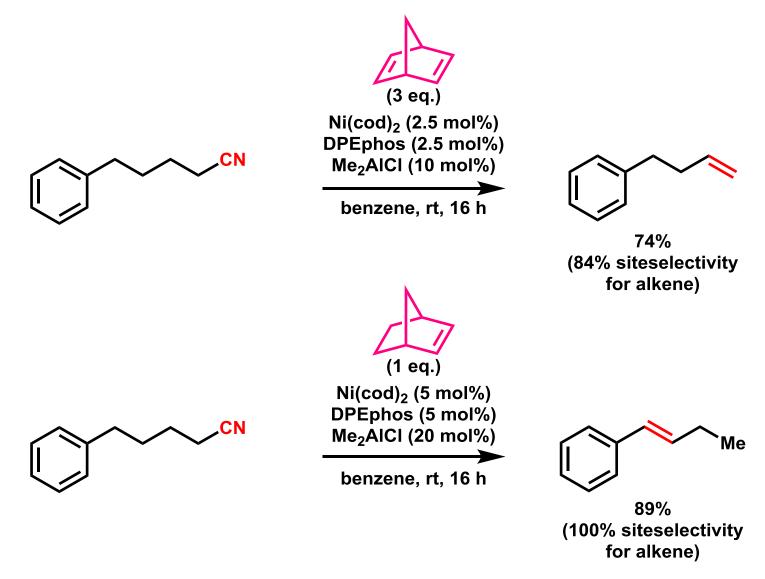

65%, 130 °C

84% (*I*:*b* > 95:5), 130 °C

95% (*I*:*b* > 95:5), 130 °C


Limitations

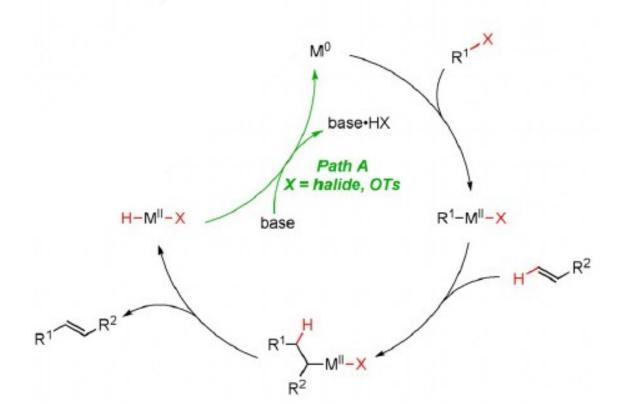
- Compatibility with Functional Groups -


free OH groups and dienes are not compatible with these conditions

Limitation - Alkene Isomerization -

Substrate Scope - Retro-hydrocyanation -

Control over Isomerization



isomerization was controlled by acceptor alkene (and equivalents?)

Application to Aromatic Ring Formation

Application to Mizorogi-Heck-type Reaction

•machanism of Mizorogi-Heck reaction

when X = CN, a Lewis acid needs for the efficient oxidative addition. \rightarrow might not be compatible with base-assisted M^0 regeneration.

Application to Mizorogi-Heck-type Reaction

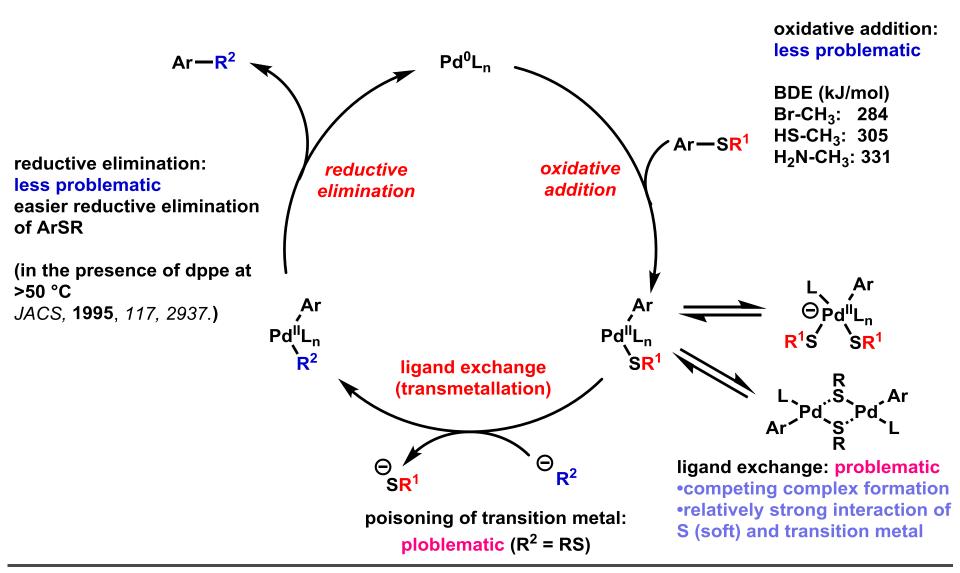
•combination of hydrocyanation with Mizorogi-Heck reaction

Fang, X.; Yu, P.; Cerai, G. P.; Morandi, B. *Chem. Eur. J.* **2016**, *22*, 15629. Bhawal, B.; Morandi, B. *Chem. Eur. J.* **2017**, *23*, 12004. (Review)

Application to Mizorogi-Heck-type Reaction

Application to Cross-Coupling Reaction

 $Ni(cod)_2$ (10 mol%)


Today's contents

1. Introduction of "isofunctional reactions"

2. Shuttle reactions - (retro-)hydrocyanation -

3. Metathesis reations - C-S or C-P bond -

Problems of Transition Metal-Catalyzed Reaction of Ar-SR

Successful Examples

transmetallation is accelerated by CuTC

Liebeskind, L. S.; Srogl, J. J. Am. Chem Soc. 2000, 122, 11260.

electron-donating and bulky ligand (NHC ligand)

Sugahara, T.; Murakami, K.; Yorimitsu, H.; Osuka, A. Angew. Chem. Int. Ed. 2014, 53, 9329.

SingaCycle-A3

Optimization of Reaction Conditions

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

LiHMDS

Entry	Pd-complex	Base	Solvent	Yield (31)*	PEPPSI-IPr	PEPPSI-SIPr	PEPPSI-IPent
1	PEPPSI-IPr	K ₂ CO ₃	toluene	0			
2	PEPPSI-IPr	KOt-Bu	toluene	18%	i-Pr i-Pr	i-Pr i-Pr	<i>i</i> -Pr <i>i-</i> Pr、
3	PEPPSI-IPr	KOAc	toluene	0	i-Pr i-Pr	i-Pr i-Pr	N
4	PEPPSI-IPr	K ₃ PO ₄	toluene	0	P'd—CI	Pd—CI	i-Pr Pd i-Pr
5	PEPPSI-IPr	KHMDS	toluene	68%	CH ₃	HN-CH ₃	Cl
6	PEPPSI-IPr	NaHMDS	toluene	45%	SingaCycle-A1	SingaCycle-A3	(IPr)Pd(allyl)Cl
7	PEPPSI-IPr	LiHMDS	toluene	81%			
8	PEPPSI-IPr	LiHMDS	o-xylene	78%			
9	PEPPSI-IPr	LiHMDS	dioxane	66%			

21%

trace

trace

trace

trace

87%

63%

92%

85%

81%

91%

90%

90%

THF

DMF

DMSO

DCE

acetonitrile

toluene

toluene

toluene

toluene

toluene

toluene

toluene

toluene

LiN(TMS)₂ was effective.

- 1. strong base

 →fast transmetallation
- 2. resulting LiSMe has poor solubility in toluene.

← 0.4% of Pd cat.

PEPPSI-IPr

PEPPSI-IPr

PEPPSI-IPr

PEPPSI-IPr

PEPPSI-IPr

PEPPSI-SIPr

PEPPSI-IPent

SingaCycle-A1

SingaCycle-A3

(IPr)Pd(allyl)Cl

SingaCycle-A1

SingaCycle-A1

SingaCycle-A1

10

11

12

13

14

15

16

17

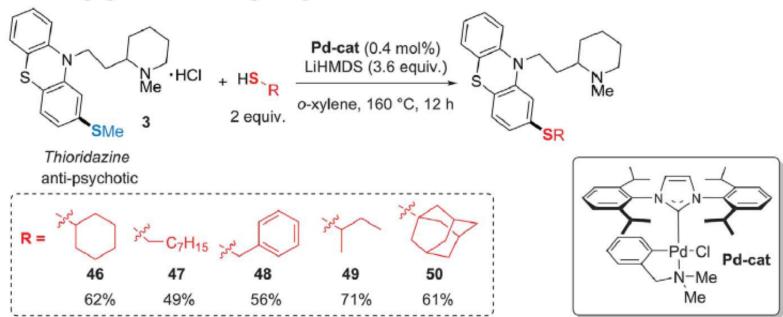
18

19

20[†]

21[‡]

22[§]


^{*}GC yield using dodecane as internal standard. †Pd-complex (1 mol%). †Pd-complex (0.5 mol%). *Pd-complex (0.4 mol%). |Pd-complex (0.3 mol%). 1.5 equiv CySH. #2.5 equiv CySH.

Substrate Scope Using Ar-SMe

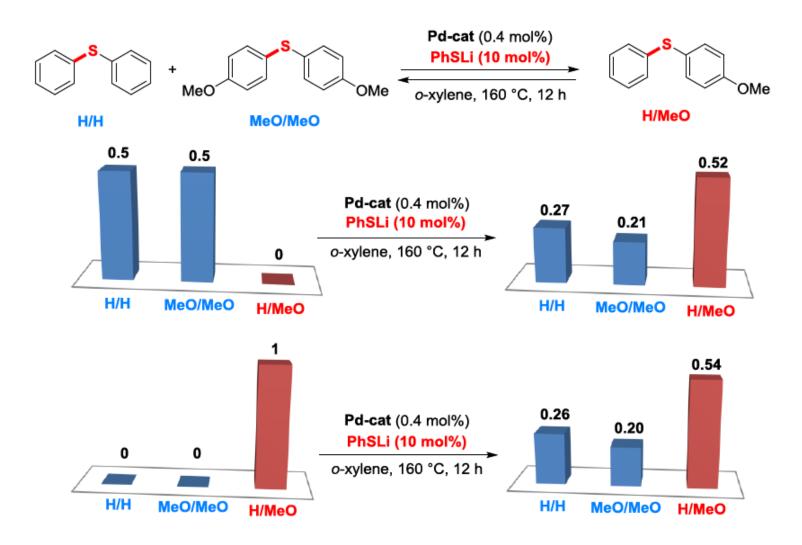
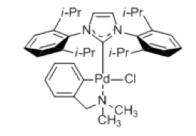
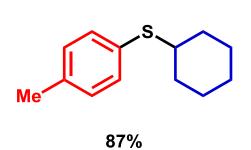
SingaCycle-A1

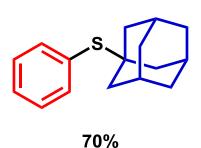
Further Application

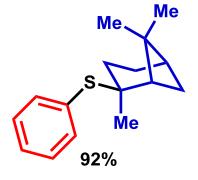
A Late-stage generation of a drug library

B Depolymerization of a commercial polymer

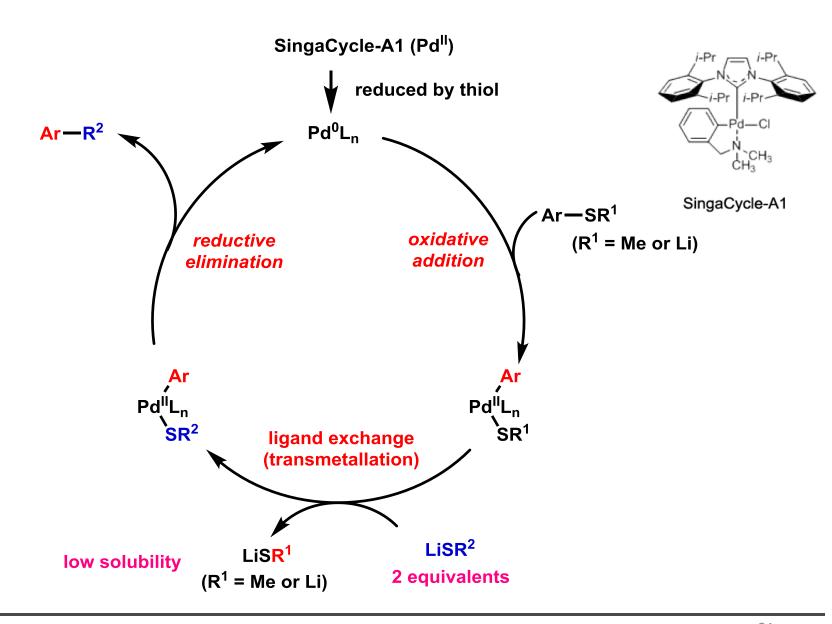
Thermal Equilibrium


Figure S1 C-S/C-S metathesis using co-catalytic RS.


Substrate Scope Using Ar-SH

SingaCycle-A1



homodimerization

$$76\% (X = S)$$

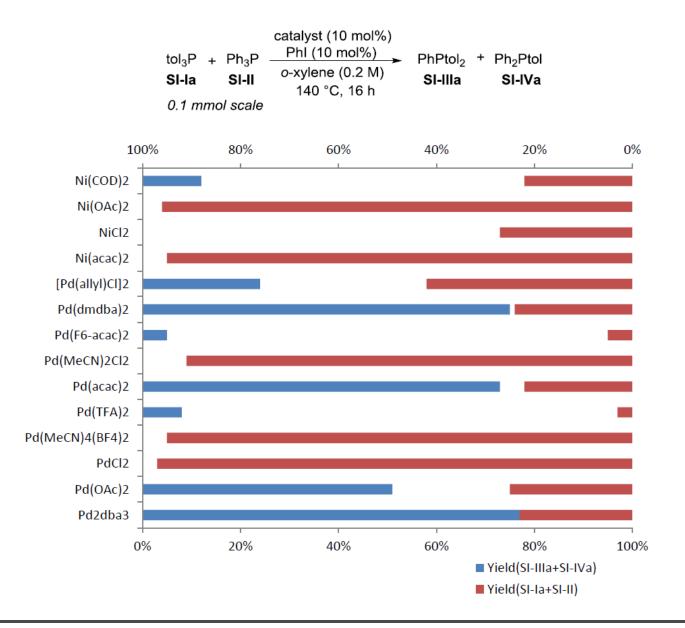
 $96\% (X = Se)$

Proposed Mechanism

Working Hypothesis

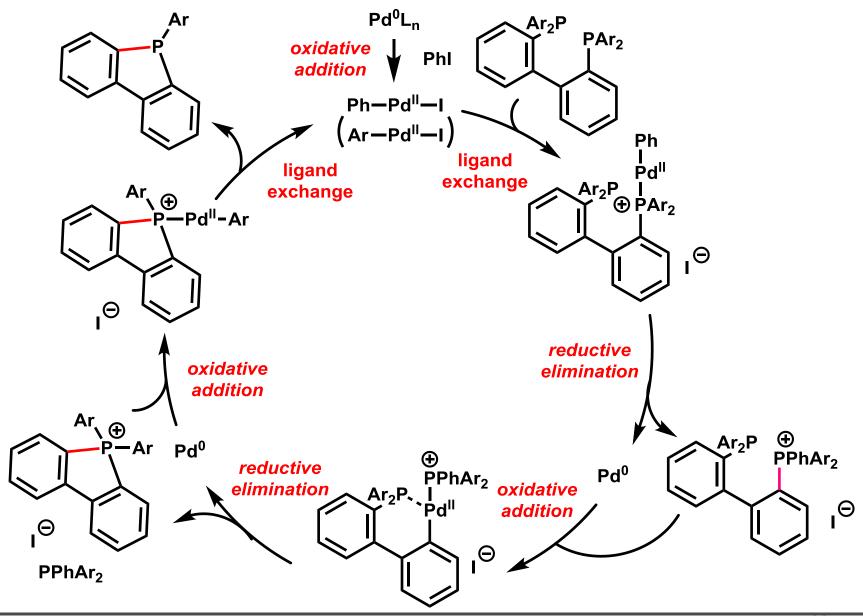
•oxidative addition to C(sp²)-P Ph₃

Chang, S. et al. Angew. Chem. Int. Ed. 2005, 44, 6166.


•reductive elimination to form phosphonium salt

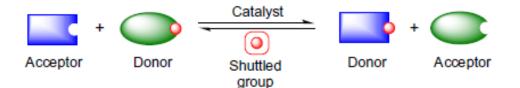
Marcoux, D.; Charette, A. B. J. Org. Chem. 2008, 73, 590.

→ By combining these results, "C-P/C-P cross metathesis" would be realized.

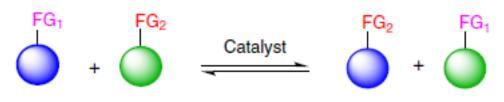

Examples of C-P/C-H Coupling

Screening the Catalyst

Application to Phosphorus Ring Formation


Plausible Catalytic Cycle

"Functional Group Metathesis" - ArCOCI & ArI -


Summary

shuttle reaction

combined with further catalytic reaction

•functional group metathesis

under developing (in many cases: sp²-X bond)

Appendix

Aliphatic C-O Bond Activation via Siloxane Intermediate

primary position selective deoxygenation of terminal 1,2-diol

$$R = alkyl$$

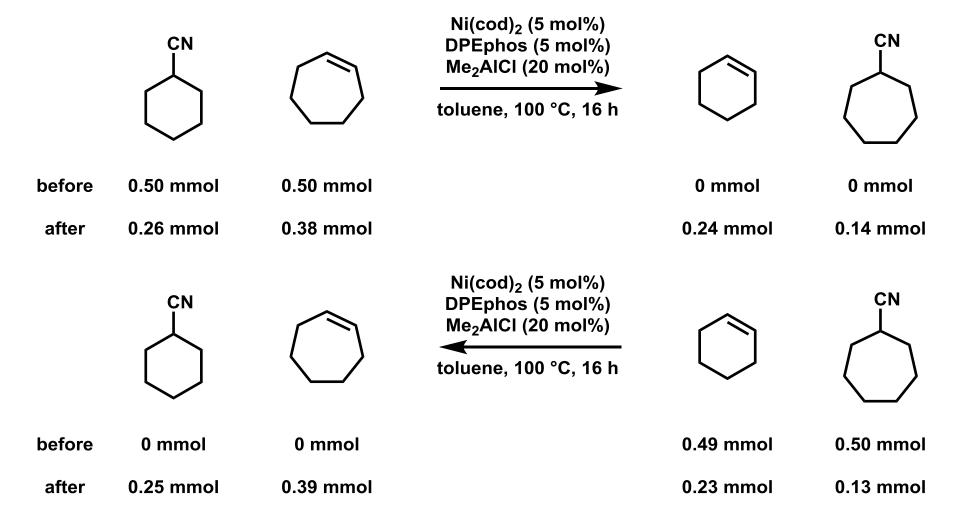
$$B(C_6F_5)_3 (1-5 \text{ mol}\%) \\ Ph_2SiH_2 (1 \text{ eq.}); \\ Ph_$$

Drosos, N.; Morandi, B. *Angew. Chem. Int. Ed.* **2015**, *54*, 8814. Cheng, G.-J.; Drosos, N.; Morandi, B.; Thiel, W. *ACS Catal.* **2018**, *8*, 1697.

pinacol-type rearrangement

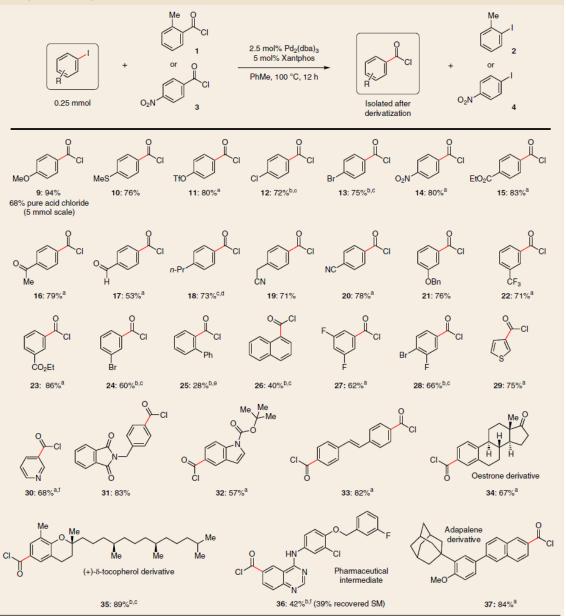
OH
$$R^{1}$$
 OH R^{2} OH R^{3} R^{3} R^{1} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{4} R^{2} R^{3} R^{2} R^{3} R^{4} R^{5} R^{2} R^{5} $R^{$

Drosos, N.; Cheng, G.-J.; Ozkal, E.; Cacherat, B.; Thiel, W.; Morandi, B. Angew. Chem. Int. Ed. 2017, 56,413377.


Substrate Scope

OH
$$R^{1}$$
 OH R^{2} OH R^{3} R^{3} R^{3} R^{3} R^{3} R^{2} R^{3} R^{4} R^{4} R^{5} R^{4} R^{5} R^{4} R^{5} $R^{$

substrate	product	substrate	product
OH Me Me OH OH CI CI OH CI OH	SiO Me 81% (from syn diol) 64% (from anti diol) SiO CI 2 CI 64%	HO Me i-Bu OH OH OH OH OH OH	OSi Me 82% (dr = 1:1) OSi Bu 88% OSi Bu 66%


Drosos, N.; Cheng, G.-J.; Ozkal, E.; Cacherat, B.; Thiel, W.; Morandi, B. Angew. Chem. Int. Ed. 2017, 56, 13377.

Confirmation of Reversible Reactions

These reactions are reversible and thermodynamic equilibrium can be reached under these conditions.

Table 1 | Substrate scope for the transformation of Arl into ArCOCI

Yields (%) refer to isolated products after in situ derivatization of the ArCOCI product (Supplementary Section 9). Reaction conditions: Arl (0.25 mmol), 1(1.5 equiv.), Pd₂(dba), (2.5 mol%), Xantphos (5 mol%), toluene, 100 °C, 12h. 1 (3 equiv.), 125 °C. 3 (1.1 equiv.), Mesitylene, 180 °C. 'o-xylene, 150 °C. For 9, a pure acid chloride was isolated on a larger scale. TtO, trifluoromethanesulfonate, 8h, benzyl.

Table 2 | Substrate scope for the transformation of ArCOCI into ArI

All yields are isolated yields (%). Reaction conditions: ArCOCI (0.25 mmol), **5** (5 equiv.), Pd₂(dba)₃ (2.5 mol%), Xantphos (5 mol%), toluene, 100 °C, 12 h. *125 °C. *7 (2 equiv.). *7 (3 equiv.). *6 (3 equiv.). *6 (2 equiv.). *5 (10 equiv.). For **56**, a HCI salt of the substrate was used with DABCO (1.4-diazabicyclo[2.2.2]octane (0.5 equiv.)).