Metal-Catalyzed Asymmetric Cross-Coupling Reactions

181215_LS_Daiki_Kamakura

Cross-Coupling Reactions Using sp³-Substrates

Choi, J.; Fu, G. C. Science, 2017, 356, 1

Strategies for Asymmetric Cross-Coupling Reactions

Μ

Ľ

....

mechanism B (stereo invertive)

chiral sunstrate

Contents

1. Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins (Fu, 2018)

2. Enantiodivergent Pd-Catalyzed C–C Bond Formation Enabled through Ligand Parameterization (Sigman, Biscoe, 2018)

Contents

1. Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins (Fu, 2018)

2. Enantiodivergent Pd-Catalyzed C–C Bond Formation Enabled through Ligand Parameterization (Sigman, Biscoe, 2018)

Fu's Previous Works

• Enantioselective cross coupling of propargyl bromide with diphenylzinc

Smith, S. W.; Fu, G. C. *J. Am. Che. Soc.* **2008**, *130*, 12645. Schley, N. D.; Fu, G. C. *J. Am. Che. Soc.* **2014**, *136*, 16588.

Control of Vicinal Stereocenters through Nickel-Catalyzed Alkyl-Alkyl Cross-Coupling

Mu, X.; Shibata, Y.; Makida, Y.; Fu, G. C. Angew. Chem. Int. Ed. 2017, 56, 5821.

Construction of Quaternary Carbon Center

• Enantioselective cross coupling of tert-haloalkane

It is difficult to quaternary carbon center by cross-coupling reaction

----> Asymmetric construction of quaternary carbon center has not been achieved.

Ni-Catalyzed Reaction of sec-Bromide with Olefin

Wang, Z.; Yin, H.; Fu, G. C. Science, 2018, 563, 379.

Design of Substrate

reactive site, cyclic substrate was designed.

Ni-Catalyzed Reaction of tert-Bromide with Olefin

Wang, Z.; Yin, H.; Fu, G. C. Science, 2018, 563, 379.

Transformations of Obtained Compound

Initially Proposed Mechanism

Wang, Z.; Yin, H.; Fu, G. C. Science, 2018, 563, 379.

Mechanistic Study

Wang, Z.; Yin, H.; Fu, G. C. Science, 2018, 563, 379.

Proposed Catalytic Cycle

Short Summary

Contents

1. Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins (Fu, 2018)

2. Enantiodivergent Pd-Catalyzed C–C Bond Formation Enabled through Ligand Parameterization (Sigman, Biscoe, 2018)

Cross-Coupling of Chiral Boronic Esters

Stereoretentive reaction

Imao, D,; Veronique, G.; Laberge, S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024.

Stereoretentive reaction

Ohmura, T.; Awano, T.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 13191.

Cross-Coupling of Chiral Boronic Esters

Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. *J. Am. Chem. Soc.* **2014**, 136, 14027. **The factors controlling the dominant mechanism of transmetallation are not understood.**

Aim of this research:

- Development of the ligand-controlled enatiodivergent cross-coupling reaction
- To reveal the factors that control the the transfer of stereochemistry

Effects of the Substituent and Ligand

—> No obvious correction was observed between these results and the steric properties (solid angle).

General Scheme of Model Development

- ^a A conformational search was performed for all phosphines using OPLS3 force field and low frequencymode conformational search. Conformers within 15kcal/mol were considered for further computations.
- ^b All structures were fully optimized at the PBE0/6-31+G(d) level and frequency analysis was performed at the same level.
- ^c Multivariate model development was performed using MATLAB R2017a with forward stepwise linear regression.

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.¹⁹

Experimental Workflow

Initial Investigations

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

Epimerization via β-Hydride Elimination

Enantiospecificity Trend

Enantiospecificity Trend

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

Effects of New Ligands

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

²⁶

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

Limitation of the Reaction

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

Multivariate Regression Analysis

Results of Multivariate Linear Regression

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

Proposed Reaction Mechanism

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, 2018, 362, 670.

Summary

Appendix

Branched : linear ratio

ligand	yield (%)	branched/linear	ligand	yield (%)	branched/linear
1	62	2.5	S1	54	2.0
2	24	2.5	S2	97	27.8
3	75	1.1	S3	78	1.5
4	17	1.1	S4	12	2.1
5	27	0.09	S5	19	1.6
6	12	0.09	S6	17	1.1
7	41	2.2	S7	46	1.0
8	67	20.2	S8	11	1.1
9	87	190	S9	69	0.8
10	57	7.4	S10	14	0.6
11	63	45	S11	70	0.8
12	25	0.5	S12	24	0.07
13	63	43	S13	67	3.6
14	50	69	S14	77	0.3
15	53	11	S15	97	0.1
			S16	50	69

Branched: linear ratios and yields for ligands used in Figure 2. (see S46 for ligands)

34

The Ratio of Branched Compounds

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, **2018**, 362, 670.

Preparation of Substrates

Stymiest, J. L.; Dutheuil, G. D.; Mahmood, A.; Aggarwal, V. K. *Angew. Chem. Int. Ed.* **2007**, *46*, 7491. Homologation reaction using lithiated carbamate: 140614_LS_Keiichiro_Fukushima

Ligand Set (1)

Xhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. Science, **2018**, 362, 670.

Ligand Set (2)

Data Set

Parameters (1)

Table S4. Parameters describing steric properties of the ligands.

N	Times		$%V_{\rm bur}$ in %			Sterimol B_1					Sterin	$101 B_5$		Sterimol L				SolidA.
NO.	Ligand	Boltz	MC	Min	Max	Boltz	MC	Min	Max	Boltz	MC	Min	Max	Boltz	MC	Min	Max	Boltz
1	PoTol ₃	41.1	41.1	33.3	41.1	4.47	4.47	4.32	4.47	6.35	6.35	6.35	6.65	6.99	6.98	6.98	7.88	153
2	PhSPhos	51.8	51.8	30.6	51.8	4.32	4.32	4.32	4.61	7.16	7.16	6.83	7.16	7.29	7.29	7.29	9.90	179
3	SPhos	55.0	55.9	32.9	60.3	4.52	4.38	4.33	4.93	7.24	7.30	6.55	7.30	7.72	7.72	7.70	10.3	192
4	PPh ₃	28.8	28.8	28.8	28.8	4.27	4.27	4.27	4.27	6.34	6.34	6.34	6.34	7.12	7.12	7.12	7.12	126
5	PEt ₃	27.4	27.6	25.6	28.0	3.25	3.39	2.98	3.39	4.81	4.80	4.77	4.87	5.93	5.74	5.74	6.73	124
6	PMe ₃	22.3	22.3	22.3	22.3	2.96	2.96	2.96	2.96	3.47	3.47	3.47	3.47	5.74	5.74	5.74	5.74	106
7	P'Bu2neopentyl	40.8	40.8	34.7	40.8	3.99	3.99	3.93	3.99	6.18	6.18	5.56	6.18	6.64	6.64	6.64	7.88	158
8	P'Bu ₃	36.6	36.6	36.6	36.6	4.04	4.04	4.04	4.04	4.87	4.87	4.87	4.87	6.62	6.62	6.62	6.62	150
9	PAd ₃	37.2	37.2	37.2	37.2	5.21	5.21	5.21	5.21	6.88	6.88	6.88	6.88	7.34	7.34	7.34	7.34	157
10	CF ₃ PhSPhos	51.9	51.9	29.6	51.9	4.59	4.59	4.59	5.24	7.99	7.99	7.99	8.17	7.96	7.96	7.96	9.44	180
11	di-CF ₃ PhSPhos	50.7	52.6	30.7	52.6	5.17	5.16	5.16	5.30	7.74	7.74	7.68	7.74	8.77	8.65	8.65	10.0	187
12	oTolSPhos	59.6	59.7	39.6	62.2	4.47	4.47	4.22	4.71	7.17	7.17	6.57	7.43	7.21	7.20	7.20	9.95	196
13	CF ₃ PhXPhos	55.6	55.6	31.5	55.6	5.41	5.41	4.89	5.41	8.03	8.03	8.03	8.19	7.94	7.94	7.94	11.5	198
14	di-CF ₃ PhXPhos	56.8	56.8	31.1	56.8	5.92	5.92	5.68	5.92	7.76	7.76	7.76	7.81	8.89	8.89	8.89	11.5	206
15	PhXPhos	55.7	56.0	32.1	58.2	4.36	4.36	4.36	4.69	7.45	7.45	7.30	7.64	7.33	7.33	7.33	11.3	199
S1	3-C9	51.3	51.2	30.5	51.8	4.32	4.30	4.30	4.57	7.23	6.89	6.89	8.13	7.31	7.27	7.27	9.85	178
S2	P'Bu ₂ Ph	35.7	35.7	35.7	35.7	3.93	3.93	3.93	3.93	6.43	6.43	6.43	6.43	7.46	7.46	7.46	7.46	145
S 3	RuPhos	57.2	59.7	52.4	59.7	4.59	4.35	4.34	4.95	8.50	8.78	8.12	8.78	7.72	7.74	7.54	7.75	203
S4	$P(2-OMe-Ph)_3$	37.2	37.4	33.2	42.3	4.98	5.07	4.28	5.07	6.38	6.36	6.36	6.57	7.09	6.92	6.92	8.74	149
S 5	$P(4-CF_3-Ph)_3$	28.8	28.8	28.8	28.8	5.31	5.31	5.30	5.31	8.04	8.04	8.04	8.04	7.70	7.88	7.51	7.88	127
S6	$PpTol_3$	28.8	28.8	28.8	28.8	4.91	4.91	4.91	4.91	7.45	7.45	7.45	7.45	7.28	7.28	7.28	7.28	126
S 7	XPhos	57.4	57.2	55.7	62.9	4.90	4.97	4.32	4.97	7.52	7.50	7.34	7.87	7.66	7.67	7.57	7.71	205
S8	monoXantphos	32.4	32.4	30.3	32.4	4.21	4.21	4.11	4.21	8.67	8.70	7.02	8.70	7.35	7.29	7.29	11.5	140
S9	CyJohnPhos	47.9	47.6	34.6	54.7	4.40	4.39	4.08	4.44	6.75	6.75	6.69	6.78	7.75	7.73	7.73	10.2	173
S10	$PBnPh_2$	30.7	30.7	27.2	32.1	3.34	3.36	3.25	3.40	7.33	7.38	6.46	7.47	7.72	7.52	7.52	9.96	134
S11	CPhos	56.9	59.7	50.9	63.0	4.89	4.97	3.47	5.00	7.69	7.88	7.25	7.97	7.64	7.66	7.62	7.86	207
S12	P"Bu ₃	26.4	26.1	25.6	33.3	3.60	3.53	3.53	4.16	7.21	7.35	6.33	7.35	8.52	8.75	6.88	8.75	121
S13	PAd ₂ "Bu	35.8	34.7	33.4	42.4	4.67	4.64	4.11	4.98	7.15	7.42	6.81	7.42	7.48	7.48	7.46	8.59	150
S14	PCy ₃	32.3	32.1	30.8	42.9	4.41	4.41	3.87	4.62	6.75	6.77	6.45	6.83	7.66	7.71	7.38	7.82	139
S15	P'Bu ₂ Me	31.9	31.9	31.9	31.9	3.31	3.31	3.31	3.31	4.87	4.87	4.87	4.87	6.63	6.63	6.63	6.63	135
S16	P'Bu ₂ Cy	36.1	36.1	35.1	40.5	3.97	3.97	3.97	4.06	6.56	6.56	5.89	6.78	7.45	7.45	6.67	7.45	147
S17	P'BuCy ₂	33.9	33.6	32.9	43.4	4.06	3.99	3.85	4.24	6.74	6.80	6.02	6.80	7.51	7.51	6.71	7.61	144

Parameters (2)

Table S5. Parameters describing electronic properties of the ligands, Pt. 1.

No	$E_{\rm HOMO}$ in Hartree			$E_{\rm LUMO}$ in Hartree				$V_{\rm min}$ in kcal/mol				$\sigma(^{31}P)$ in ppm					
INO.	Ligand	Boltz	MC	Min	Max	Boltz	MC	Min	Max	Boltz	MC	Min	Max	Boltz	MC	Min	Max
1	PoTol ₃	-0.258	-0.258	-0.258	-0.250	0.000	0.000	-0.006	0.000	-27.6	-27.6	-32.9	-27.6	343	343	306	343
2	PhSPhos	-0.253	-0.253	-0.253	-0.213	0.004	0.004	-0.019	0.004	-35.3	-35.3	-35.3	-35.1	325	325	302	325
3	SPhos	-0.251	-0.251	-0.256	-0.247	0.014	0.012	0.011	0.017	-43.3	-43.4	-44.7	-41.2	325	325	284	355
4	PPh ₃	-0.265	-0.265	-0.265	-0.225	0.000	0.000	-0.024	0.000	-29.9	-29.9	-29.9	-29.9	320	320	320	320
5	PEt ₃	-0.269	-0.271	-0.271	-0.267	0.061	0.063	0.058	0.063	-38.1	-37.6	-38.9	-37.5	341	338	338	345
6	PMe ₃	-0.274	-0.274	-0.274	-0.274	0.065	0.065	0.065	0.065	-36.6	-36.6	-36.6	-36.6	384	384	384	384
7	P ^t Bu ₂ neopentyl	-0.259	-0.259	-0.259	-0.219	0.052	0.052	0.035	0.052	-39.1	-39.1	-43.2	-39.1	301	301	266	301
8	P ^t Bu ₃	-0.255	-0.255	-0.255	-0.255	0.059	0.059	0.059	0.059	-41.9	-41.9	-41.9	-41.9	256	256	256	256
9	PAd ₃	-0.247	-0.247	-0.247	-0.247	0.038	0.038	0.038	0.038	-44.6	-44.6	-44.6	-44.6	253	253	253	253
10	CF ₃ PhSPhos	-0.271	-0.271	-0.271	-0.228	-0.025	-0.025	-0.047	-0.025	-25.0	-25.0	-25.0	-24.1	324	324	308	324
11	di-CF3PhSPhos	-0.281	-0.281	-0.285	-0.281	-0.041	-0.041	-0.041	-0.041	-18.8	-18.9	-18.9	-17.9	322	323	308	323
12	oTolSPhos	-0.250	-0.250	-0.256	-0.210	0.005	0.005	-0.018	0.005	-34.7	-34.7	-36.2	-31.7	341	341	315	345
13	CF ₃ PhXPhos	-0.276	-0.276	-0.278	-0.276	-0.032	-0.031	-0.033	-0.031	-23.6	-23.6	-23.6	-21.5	331	331	294	331
14	di-CF3PhXPhos	-0.286	-0.286	-0.289	-0.286	-0.047	-0.047	-0.048	-0.047	-18.1	-18.1	-18.1	-14.9	330	330	296	330
15	PhXPhos	-0.260	-0.260	-0.260	-0.256	-0.008	-0.007	-0.010	-0.007	-32.8	-32.8	-35.7	-32.1	331	331	293	332
S1	3-C9	-0.249	-0.250	-0.251	-0.206	-0.016	-0.016	-0.038	-0.015	-36.1	-37.1	-37.1	-33.6	329	330	302	330
S2	P ^t Bu ₂ Ph	-0.263	-0.263	-0.263	-0.263	0.005	0.005	0.005	0.005	-38.8	-38.8	-38.8	-38.8	278	278	278	278
S 3	RuPhos	-0.251	-0.251	-0.255	-0.249	0.015	0.014	0.009	0.018	-44.7	-44.6	-46.1	-43.6	326	326	324	337
S4	P(2-OMe-Ph) ₃	-0.245	-0.244	-0.250	-0.204	0.011	0.011	-0.015	0.011	-42.4	-42.7	-42.7	-37.2	351	352	330	353
S5	$P(4-CF_3-Ph)_3$	-0.297	-0.297	-0.297	-0.254	-0.038	-0.038	-0.060	-0.038	-13.6	-13.6	-13.6	-13.6	320	320	320	320
S6	PpTol ₃	-0.256	-0.256	-0.256	-0.217	0.006	0.006	-0.018	0.006	-32.9	-32.9	-32.9	-32.9	323	323	323	323
S 7	XPhos	-0.257	-0.257	-0.262	-0.217	0.002	0.003	-0.026	0.004	-40.2	-40.1	-41.9	-38.2	329	329	329	343
S8	monoXantphos	-0.258	-0.258	-0.261	-0.221	-0.002	-0.001	-0.032	-0.001	-32.6	-32.6	-32.6	-31.9	328	328	309	328
S9	CyJohnPhos	-0.257	-0.256	-0.262	-0.256	0.000	0.000	-0.001	0.000	-39.5	-39.3	-40.7	-39.3	333	333	285	345
S10	PBnPh ₂	-0.268	-0.269	-0.269	-0.229	0.000	0.001	-0.023	0.001	-30.4	-30.7	-30.9	-28.7	322	323	310	323
S11	CPhos	-0.250	-0.249	-0.255	-0.248	0.005	0.005	0.004	0.008	-42.0	-40.6	-45.8	-40.6	323	323	314	337
S12	$P^{n}Bu_{3}$	-0.266	-0.265	-0.269	-0.264	0.054	0.054	0.051	0.061	-39.2	-39.3	-39.6	-37.5	350	350	346	366
S13	PAd ₂ ⁿ Bu	-0.255	-0.255	-0.255	-0.250	0.043	0.042	0.040	0.044	-42.1	-42.3	-43.8	-39.5	293	291	285	312
S14	PCy ₃	-0.258	-0.258	-0.261	-0.252	0.054	0.054	0.049	0.058	-41.6	-41.7	-43.9	-39.0	306	304	285	341
S15	P'Bu ₂ Me	-0.262	-0.262	-0.262	-0.262	0.057	0.057	0.057	0.057	-40.0	-40.0	-40.0	-40.0	309	309	309	309
S16	P'Bu ₂ Cy	-0.254	-0.254	-0.256	-0.253	0.056	0.056	0.055	0.057	-42.2	-42.2	-42.7	-40.5	268	268	268	294
S17	P'BuCy ₂	-0.257	-0.258	-0.259	-0.253	0.054	0.054	0.051	0.056	-41.7	-41.5	-43.0	-39.2	290	292	277	323

Parameters (3)

Table S6. Parameters describing electronic properties of the ligands, Pt. 2.

No	Ligand		NBC	Q(P)		$E_{\rm LP(P)}$ in	Hartree	$E_{\sigma^*(P-C)\min}$	in Hartree	$E_{\sigma^*(P-C)avg}$ in Hartree		
190.	Ligand	Boltz	MC	Min	Max	Boltz	MC	Boltz	MC	Boltz	MC	
1	PoTol ₃	0.819	0.819	0.819	0.836	-0.398	-0.398	0.261	0.261	0.261	0.261	
2	PhSPhos	0.841	0.841	0.837	0.841	-0.398	-0.398	0.262	0.262	0.263	0.263	
3	SPhos	0.829	0.831	0.764	0.831	-0.396	-0.394	0.241	0.242	0.251	0.252	
4	PPh ₃	0.829	0.829	0.829	0.829	-0.406	-0.406	0.254	0.254	0.254	0.254	
5	PEt ₃	0.764	0.762	0.758	0.768	-0.421	-0.425	0.234	0.235	0.235	0.235	
6	PMe ₃	0.764	0.764	0.764	0.764	-0.424	-0.424	0.243	0.243	0.243	0.243	
7	P'Bu2neopentyl	0.788	0.788	0.788	0.794	-0.400	-0.400	0.212	0.212	0.221	0.221	
8	P'Bu ₃	0.785	0.785	0.785	0.785	-0.387	-0.387	0.207	0.207	0.207	0.207	
9	PAd ₃	0.839	0.839	0.839	0.839	-0.369	-0.369	0.220	0.220	0.220	0.220	
10	CF ₃ PhSPhos	0.852	0.852	0.847	0.852	-0.417	-0.417	0.243	0.243	0.244	0.244	
11	di-CF ₃ PhSPhos	0.863	0.864	0.849	0.864	-0.431	-0.432	0.226	0.226	0.229	0.229	
12	<i>o</i> TolSPhos	0.834	0.834	0.827	0.841	-0.393	-0.393	0.266	0.266	0.268	0.268	
13	CF ₃ PhXPhos	0.854	0.854	0.844	0.854	-0.422	-0.422	0.237	0.237	0.238	0.238	
14	di-CF3PhXPhos	0.865	0.865	0.853	0.865	-0.437	-0.437	0.220	0.220	0.223	0.223	
15	PhXPhos	0.843	0.843	0.839	0.849	-0.404	-0.403	0.253	0.253	0.257	0.257	
S1	3-C9	0.843	0.843	0.838	0.843	-0.400	-0.400	0.258	0.258	0.260	0.260	
S2	P'Bu ₂ Ph	0.804	0.804	0.804	0.804	-0.388	-0.388	0.211	0.211	0.229	0.229	
S 3	RuPhos	0.827	0.830	0.789	0.837	-0.396	-0.394	0.241	0.242	0.251	0.251	
S4	P(2-OMe-Ph) ₃	0.890	0.892	0.851	0.892	-0.393	-0.394	0.269	0.269	0.269	0.269	
S5	$P(4-CF_3-Ph)_3$	0.841	0.841	0.841	0.841	-0.436	-0.436	0.224	0.224	0.224	0.224	
S6	PpTol ₃	0.829	0.829	0.829	0.829	-0.400	-0.400	0.261	0.261	0.261	0.261	
S7	XPhos	0.827	0.829	0.783	0.829	-0.403	-0.402	0.231	0.231	0.242	0.242	
S8	monoXantphos	0.848	0.848	0.836	0.848	-0.405	-0.405	0.252	0.252	0.257	0.257	
S9	CyJohnPhos	0.822	0.825	0.793	0.825	-0.403	-0.401	0.233	0.234	0.243	0.243	
S10	$PBnPh_2$	0.827	0.829	0.822	0.829	-0.420	-0.421	0.217	0.217	0.240	0.240	
S11	CPhos	0.837	0.846	0.793	0.846	-0.398	-0.398	0.238	0.240	0.247	0.248	
S12	$P''Bu_3$	0.786	0.786	0.772	0.792	-0.412	-0.411	0.238	0.238	0.239	0.239	
S13	PAd_2^nBu	0.838	0.841	0.822	0.843	-0.388	-0.387	0.229	0.230	0.234	0.234	
S14	PCy ₃	0.812	0.814	0.761	0.823	-0.397	-0.396	0.231	0.231	0.236	0.236	
S15	P'Bu ₂ Me	0.794	0.794	0.794	0.794	-0.402	-0.402	0.213	0.213	0.223	0.223	
S16	P'Bu ₂ Cy	0.808	0.808	0.765	0.808	-0.384	-0.384	0.215	0.215	0.221	0.221	
S17	$P'BuCy_2$	0.806	0.804	0.746	0.817	-0.393	-0.397	0.214	0.213	0.227	0.227	

Initial Investigations

Table S-1. Effect of Reaction Parameters.

