Problem Session

Oct 13, 2018

Hiroaki Itoh

Please assign the signals of region A in Figure 1. ${}^{1}H{-}{}^{1}H$ DQF-COSY, ${}^{1}H{-}{}^{1}H$ ROESY, ${}^{1}H{-}{}^{13}C$ HSQC spectra, and an overlay of the ${}^{1}H{-}{}^{1}H$ TOCSY and ${}^{1}H{-}{}^{1}H$ ROESY spectra are available as "spectra.pdf" (pp. 9–13).

Figure 1. ¹H–¹H TOCSY spectrum of 1 in DMSO-*d*₆.

¹H chemical shift assignment of peptides using 2D NMR experiments

1. Introduction

¹H chemical shift assignment of peptides/proteins is important for

- Structure validation or determination of peptides
- Secondary or higher-order structure analysis of peptides/proteins
- Chemical shift perturbation experiment for analysis of intermolecular interaction

One-dimensional ¹H NMR spectrum is less meaningful in peptide or protein analysis due to the peak overlapping (Figure 1).

Figure 1. ¹H NMR spectra of (A) magainin 2 (23 residues) in H₂O/trifluoroethanol- d_3 (3:1), (B) basic pancreatic trypsin inhibitor (58 residues) in D₂O, and (C) staphylococcal nuclease (156 residues) in H₂O/D₂O (9:1). This figure was taken from ref 1.

2. Methods

2D NMR experiments for the analysis

homonuclear (¹H-¹H) correlation

through-bond correlation: DQF-COSY (correlation of J-coupled protons), TOCSY (correlation of all protons in a coupling network)

through-space correlation: NOESY, ROESY (spatial proximity)

heteronuclear (¹H-¹³C for non-labeled peptides) correlation

HSQC, HMBC

Assignment

- 1. Classification of the spin system of each amino acid using COSY and TOCSY
- 2. Determination of the sequence of amino acids using NOESY, ROESY or HMBC
- 3. HSQC is also helpful to determine a pair of geminal protons and the proton connected to the characteristic carbon that has an isolated chemical shift

Classification of spin system (20-proteinogenic amino acids)² using COSY and TOCSY

unique: Gly/Ala/Val/Leu/Ile/Thr

AMX (CH^α, two CH^β signals form AMX spin system): Phe, Tyr, His, Trp, Asp, Asn, Cys, and Ser Ser can be distinguished because of lower field C^βH shifts

long side chain: Lys, Arg, Met, Glu, and Gln (Orn)

Met, Glu, and Gln can be distinguished because of lower field C^{γ}H shifts **no NH**: Pro

Figure 2. Schematic representations of the patterns of cross peaks in COSY and TOCSY spectra of alanine, serine, and ornithine in DMSO- d_6 .

Determination of the amino-acid sequence (connectivity of each spin system) using NOESY/ROESY

Figure 3. Schematic representations of the patterns of cross peaks in NOESY/ROESY spectra of Ala-Ser dipeptide unit in DMSO- d_6

Table 1. Random coil ¹H chemical shifts for the 20-proteinogenic amino acids³

Gly-Gly-X-Ala-Gly-Gly in deutrated buffer (pH 5.1 50 mM phosphate, 1.0 M deutrated urea in D_2O)

residue X	NH	Hα	H ^β	others
Ala	8.24	4.32	1.39	
Cys	8.32	4.55	2.93, 2.93	
Asp	8.34	4.64	2.72, 2.65	
Glu	8.42	4.35	2.06, 1.96	γCH ₂ 2.31
Phe	8.30	4.62	3.14, 3.04	Ar 7.28, 7.38, 7.32
Gly	8.33	3.96		
His	8.42	4.73	3.29, 3.16	Ar 8.58, 7.29
lle	8.00	4.17	1.87	γCH ₂ 1.45, 1.16, γCH ₃ 0.91. δCH ₃ 0.86
Lys	8.29	4.32	1.84, 1.75	γCH2 1.44, δCH2 1.68, εCH2 2.99, εNH3 ⁺ , 7.81
Leu	8.16	4.34	1.62, 1.62	γCH 1.59, δCH ₃ 0.92, 0.87
Met	8.28	4.48	2.11, 2.01	γCH ₂ 2.60, 2.54, εCH ₃ 2.10
Asn	8.40	4.74	2.83, 2.75	γNH ₂ 7.59, 6.91
Pro	-	4.42	2.29, 1.94	γCH ₂ 2.02, δCH ₂ 3.63
Gln	8.32	4.34	2.12, 1.99	γCH ₂ 2.36, δNH ₂ 7.52, 6.85
Arg	8.23	4.34	1.86, 1.76	γCH ₂ 1.63, δCH ₂ 3.20, εNH 8.07
Ser	8.31	4.47	3.89, 3.87	
Thr	8.15	4.35	4.24	γCH ₃ 1.21
Val	8.03	4.12	2.08	γCH ₃ 0.94, 0.93
Trp	8.25	4.66	3.29, 3.27	Ar 7.27, 7.65, 7.18, 7.25, 7.50
Tyr	8.12	4.55	3.03, 2.98	Ar 7.14, 6.84

These basics of assignment can be applicable to the non-ribosomal and post-translationally modified peptides.

3. Turgichelin

turgichelin (1)

turgichelin: an oligomer of two Ser and three Orn derivatives

isolation: from *Streptomyces turgidiscabies* as a siderophore (natural product as an iron chelator produced by bacteria to uptake Fe ions for their growth)⁴

For structure determination and assignment of siderophore, gallium (III) is utilized (substitution of paramagnetic Fe(III) with diamagnetic Ga(III) for the NMR experiments).

Step 1. classification of spin system using TOCSY spectrum

Step 2. differentiation of three Orn derivatives

Step 3. determination of the amino-acid sequence

Figure 4. Assignment of TOCSY cross peaks of 1.

Figure 5. TOCSY correlations and key ROESY correlations of 1.

		(/		,
residue	position	δ ppm		residue	position	δ ppm
	N <i>M</i> e	2.50		Ser-4	NH	8.87
	NH	8.77			Hα	4.50
	Hα	3.90			H ^β	3.36
	H ^β	1.90				3.59
N Ma hfOrm 1		1.53	-		NH	8.52
IN-IME INTO TO TO T	Ηγ	1.63			Hα	4.73
		1.31			H ^β	1.96
	H ^δ	3.47		cyclic hOrn-5		1.60
		3.40		,	Ηγ	2.28
	formyl	8.07				1.77
	NH	8.99			Hδ	3.50
0 0	Hα	4.72	•			
Ser-2	H ^β	3.71				
		3.60				
	N <i>M</i> e	2.47				
	NH	8.92				
	Hα	3.63				
	H ^β	1.71				
N-Me hOrn-3		1.65				
	Ηγ	1.68				
	-	1.59				
	Hδ	4.10				
	- •	3 30				

Table 2. ¹H NMR chemical shifts of **1** (2.1 mM) in DMSO-*d*₆ at 30 °C (800 MHz)

References

- (1) Bax, A. Annu. Rev. Biochem. 1989, 58, 223-256.
- (2) Jones, C.; Mulloy, B.; Thomas, A. H. Eds. Spectroscopic methods and analyses. *Methods in Molecular Biology* (1993).
- (3) Wishart, D. S. Bigam, C. G.; Holm, A.; Hodges, R. S.; Sykes, B. D. J. Biomol. NMR 1995, 5, 67-81.
- (4) Kodani, S.; Bicz, J.; Song, L.; Deeth, R. J.; Ohnishi-Kameyama, M.; Yoshida, M.; Ochi, K.; Challis, G.
 L. Org. Biomol. Chem. 2013, 11, 4686-4694.

¹H-¹H TOCSY spectrum of **1** in DMSO- d_6

¹H-¹H ROESY spectrum of **1** in DMSO- d_6

¹H-¹³C HSQC spectrum of **1** in DMSO- d_6

an overlay of the ¹H-¹H TOCSY spectrum (purple) and the ¹H-¹H ROESY spectrum (black)

