Design of Enzyme

Contents

1. Introduction

- 2. De novo design
- 3. Incorporation of unnatural amino acid (main paper)

1.1 Advantages and limitations of natural enzyme

			_1
A	dvantages	Limitations	
1. eff	Enviable iciency	1. Not optimal for abiological tasks	 section 2
2. sel	Enviable lectivity	2. A narrow substrate range	section 3 (main pape)
		3. Difficult to produce	
		4. Lack appropriate stability	

1.2 Concepts and methods of enzyme design

Contents

1. Introduction

2. De novo design

REPORT

Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction

Justin B. Siegel^{1,2,*}, Alexandre Zanghellini^{1,2,*,†}, Helena M. Lovick³, Gert Kiss⁴, Abigail R. Lambert⁵, Jennifer L. St.Clair¹... + See all authors and affiliations

Science 16 Jul 2010: Vol. 329, Issue 5989, pp. 309-313 DOI: 10.1126/science.1190239

2.1 Procedure of de novo design through computational method

2.2 Catalytic mechanism

2.3 Design of enzyme models

1. Baker, D. *et al. Science* **2010**, *329*, 309. 2. Baker, D. *et al. Pro. Sci.* **2006**, *15*, 2785.

2.4 Experimental validation

the

isomerase

from

2.5 Further optimization

 $k_{\rm cat}/k_{\rm uncat}$ (M)

DA_20_00	DA_42_00	
6 mutations	4 mutations	
DA_20_10	DA_42_04	
DA_20_10 100-fold	DA_42_04 20-fold	

Catalyst	k _{cat} (hour ⁻¹)	K _{M-diene} (mM)	K _{M-dienophile} (mM)	$k_{\text{cat}}/K_{\text{M-diene}}$ (s ⁻¹ M ⁻¹)	$k_{\text{cat}}/K_{\text{M-dienophile}}$ (s ⁻¹ M ⁻¹)	$k_{\text{cat}}/(K_{\text{M-diene}} \times K_{\text{M-dienophile}})$ (s ⁻¹ M ⁻¹ M ⁻¹)
DA_20_00	$\textbf{0.10} \pm \textbf{0.02}$	3.5 ± 1.5	146.0 ± 2.5	0.008	0.0002	0.06
DA_20_10	2.13 ± 0.24	1.3 ± 0.1	72.8 ± 5.1	0.455	0.0081	6.23
DA_42_04	$\textbf{0.03} \pm \textbf{0.01}$	0.5 ± 0.1	$\textbf{16.2} \pm \textbf{3.2}$	0.017	0.0005	1.03
mAb 7D4	0.21	1.0	1.7	0.058	0.0343	20.18
mAb 4D5	0.21	1.6	5.9	0.036	0.0099	6.19

Table 1. Kinetic parameters for DA_20_00, DA 20 10, and DA 42 04.

Figure 1. Effective molarity of DA 20_00, DA_20_10, and DA_42_04 compared to catalytic antibodies.

1. Baker, D. *et al. Science* **2010**, *329*, 309. 2. Janda, K. D. *J. et al. Am. Chem. Soc.* **1995**, *117*, 7041.

2.6 Stereoselectivity

2.7 Substrate specificity

2.8 Short summary

Contents

- 1. Introduction
- 2. De novo design
- 3. Incorporation of unnatural amino

acid (main paper)

nature chemistry

A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue

Ivana Drienovská[®], Clemens Mayer[®], Christopher Dulson and Gerard Roelfes[®]*

ARTICIES

https://doi.org/10.1038/s41557-018-0082-z

Gerard Roelfes

Research interests:

- DNA based catalysis
- <u>Artificial enzymes</u>
- Bioorthogonal metal catalysis
- Artificial allosteric systems
- Targeting of ROS in living cells

2000 M.Sc. and Ph. D.

University of Groningen, the Netherlands (Prof. Ben L. Feringa, on synthetic models for enzyme)

2000-2003 Post-doc. fellow

Laboratory for organic chemistry of ETH-Zürich (Switzerland)

(Prof. Donald Hilvert, on synthetic strategy towards seleno-proteins)

2003-2006 Junior research group leader

University of Groningen

- 2006-2010 Assistant professor
- 2010-2015 Associate professor
- 2015- Full professor of biomolecular chemistry and catalysis

3.1 Protein template for redesign

Figure 4. Surface view of the dimeric LmrR (PDB ID: 4ZZD)

- homodimeric protein
- 13,5 kDa per monomer
- <u>an unusual large hydrophobic pore at</u> <u>the dimer surface</u> (as depicted in red frame)

Previous work based on this protein:

Diels-Alder reaction
 Roelfes, G. et al. Angew. Chem., Int. Ed.
 2012, 51, 7472.

Hydration
 Roelfes, G. *et al. Chem. Sci.* 2013, *4*, 3578.
 Friedel-Crafts alkylation reaction
 Roelfes, G. *et al. Chem. Sci.* 2015, *6*, 770.
 Roelfes, G. *et al. J. Am. Chem. Soc.* 2015, *137*, 9796.

Main paper:

Hydrazone and oxime formation

A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue

Ivana Drienovská[®], Clemens Mayer[®], Christopher Dulson and Gerard Roelfes[®]*

^{1.} Shimada, I. *et al.Sci. Rep.***2014**, *4*, 6922.

^{2.} Thunnissen, A. et al. EMBO J. 2008, 28, 156.

3.2 Enzyme design

In previous work, catalysis was achieved through incorporation of metal-binding <u>unnatural amino acids</u> where they do **not** actively participate in catalysis but work as a kind of **cofactor recruiter**.

hydrazone (X = NH), oxime (X = O).

In this work, <u>unnatural amino acid (pAF,</u> <u>*p*-aminophenylalanine</u>) is inserted to act as catalytic residue to catalyze hydrazone and oxime formation.

1. Roelfes, G. *et al. Chem. Sci.* **2015**, *6*, 770. 2. Jencks, W. P. *et al. J. Am. Chem. Soc.***1962**, *84*, 826.

3.2 Enzyme design

3.3 Hydrazone formation

3.4 Intermediate analysis

3.4 Intermediate analysis

3.5 Kinetic characterization

 $\Delta \epsilon_{472 \text{ nm}} = 29,585 \text{ M}^{-1} \text{ cm}^{-1}$

Figure 5. Double-reciprocal plot the dependence of reaction velocity on NBD-H conc. at different 4-HBA conc.

3.5 Kinetic characterization

Figure 6. Comparison between the initial reaction rates of LmrR_V15pAF, LmrR_V15Y and LmrR at a 4-HBA conc. of 5 mM.

3.6 Oxime formation

3.6 Oxime formation

Model reaction for probe oxime formation (catalyzed by aniline)

Figure 8. HPLC study for the oxime formation catalyzed by aniline.

3.6 Oxime formation

Figure 9. Comparison of initial reaction velocities of LmrR, LmrR_V15Y and LmrR_V15Y for the hydrolysis (**a**) and oxime formation (**b**).

^{1.} Roelfes, G. et al. Nat. Chem., 2018, AOP.

3.7 Short summary

Summary

Appendix. View of design model

Surface view of the design model (DA_20_00, green) bound to the substrates (diene and dienophile, purple). The frames show the hydrogen bonds designed in **section 2.1.1**.

Appendix. To what extent is TS stabilized by hydrogen bonds?

A. Uncatalyzed

B. Diene-activating residue: Glu; dienophile: Tyr

1. Baker, D. et al. Science 2010, 329, 309.

C. Diene-activating residue: Gln; dienophile: Tyr

Appendix. How does 10¹⁹ come?

(75,442,752)

<u>¹poses from amide \times ²poses from hydroxyl \times positions for 1st</u> (256,608)

³ numbers of residue catalytic residue (20)

⁴ numbers of residue

positions for 2nd X catalytic residue (19)

⁵ numbers protein X scaffold (207)

⁶ num<u>bers of TS</u> structures (15)

×

 $= 2.28 \times 10^{19}$

Appendix. How does 10¹⁹ come?

Amino Acid Rotamers						
Rotatable Bond	Ideal Value	Deviation	# of Conformations			
χ1	60°/-180°/-60°	+/- 10.0°	9			
χ2 (Tyr only)	0°/90°	+/- 20.0°	9			
Number of rotamers Ser			79			
Number of rotamers Thr	9					
Number of rotamers Tyr	2		81			

Transition State Orientations

Rotatable Bond	Ideal Value	Deviation	# of Conformations
d	2.0Å	0.1 Å	1
91	120.0°	10.0°	1
92	109.5°	10.0°	1
χ 1	180.0°	+/- 180.0°	2
2	Free	Every 10°	36
Ø	Free	Every 10°	36
TS discrete orientations			2592

Total transition state poses off of hydroxyl: (Number of rotamers * Number of orientations)

Amino Acid Rotamers Rotatable Bond Ideal Value Deviation # of Conformations +/- 10.0° 60°/-180°/-60° 21 21 60°/0°/-60° +/- 20.0° (Gin only) 60°/0°/-60° +/- 20.0° 21 441 Number of rotamers Asn 9261 Number of rotamers Gin

Transition	State	Orlent	ations
-------------------	-------	--------	--------

Rotatable Bond	Ideal Value	Deviation	# of Conformations
d	2.0Ă	0.1 Ă	1
01	180.0°	10.0°	1
62	120.0°	10.0°	3
χ1	Free	Every 10°	36
x2	Free	Every 10°	36
13	180.0°	+/- 180.0°	2
TS discrete orientations			7776

Total transition state poses off of amide: (Number of rotamers * Number of orientations)

75442752

1. Baker, D. et al. Science 2010, 329, 309.

Appendix. Active sites of designed Diels Alderases

1. Baker, D. et al. Science 2010, 329, 309.

Appendix. Details about the enzyme evaluation in section 3.3

Yields and standard deviations from at least 3 independent experiments obtained for small molecules and protein catalysts in the chromogenic, model hydrazone formation reaction between 4-hydrazino-7-nitro-2,1,3-benzoxadiazole (NBD-H) and 4-nitrobenzaldehyde (4-NBA)

entry	catalyst	[cat] (µM)	yields	
1	8755		6 ± 3	
2	aniline	1000	40 ± 4	
3	pAF	1000	39 ± 1	
4	LmrR -	-	46 ± 5	
5	W96A		11 ± 3	
6	bcPadR1		4 ± 1	
7	BSA		5 ± 2	
8	V15pAF		72 ± 3	
9	N19pAF		42 ± 2	
10	M89pAF		37 ± 2	
11	F93pAF	10	58 ± 1	
12	V15K	10	24 ± 3	
13	V15Y		53 ± 1	
14	V15pAzF		49 ± 2	
15	N19pAzF		38 ± 1	
16	M89pAzF		34 ± 1	
17	F93pAzF		40 ± 1	
18 ¹	LmrR*		45	after modification
19 ¹	V15pAF* -		15	in page 21

¹ These yields are for enzymes after their respective modifications with 4-NBA and are the result from a single measurement.

Appendix. Comparison of catalytic parameters for LmrR_V15pAF and aniline derivatives

entry	catalyst	rate constan (M ⁻² s ⁻¹)
1	LmrR_V15pAF	629
2	aniline	1.12
3	anthranilic acid	1.53
4	5-methoxyanthranilic acid	2.07
5	3,5-diaminobenzoic acid	2.71

Appendix. Comparison of catalytic parameters for LmrR_V15pAF and other designer enzymes that catalyze bimolecular reactions

entry	enzyme	<i>k</i> _{uncat} (М ⁻¹ s ⁻¹)	k _{cat} (s ⁻¹)	К _{М1} (М)	К _{М2} (М)	κ _{cat} / Κ _{M1} Κ _{M2} (M ⁻² s ⁻¹)	EM (M)	1/TS x 10 ⁻⁶ (M ⁻¹)
1	V15pAF	3.95 x 10 ⁻⁴	5.00 x 10 ⁻⁴	1.00 x 10 ⁻⁴	7.92 x 10 ⁻³	6.29 x 10 ²	1.27	1.6
2 ¹	DA_20_00	1.19 x10 ⁻⁵	2.78 x10 ⁻⁵	3.50 x10 ⁻³	1.46 x10 ⁻¹	5.44 x10 ⁻²	2.33	0.0046
3 ¹	DA_42_04	1.19 x10 ⁻⁵	8.33 x10 ⁻⁶	5.00 x10 ⁻⁴	1.62 x10 ⁻²	1.03 x10 ⁰	0.70	0.086
4 ²	AB 7D4	1.19 x10 ⁻⁵	5.83 x10 ⁻⁵	1.00 x10 ⁻³	1.70 x10 ⁻³	3.43 x10 ¹	4.90	2.87
5 ³	AB 4D5	1.19 x10 ⁻⁵	5.83 x10 ⁻⁵	1.60 x10 ⁻³	5.90 x10 ⁻³	6.18 x10 ⁰	4.90	0.52
6 ⁴	Ab 39, A11	1.89 x10 ⁰	6.70 x10 ⁻¹	1.13 x10 ⁻³	7.40 x10 ⁻⁴	8.01 x10 ⁵	0.35	0.42
7 ⁵	Ab 1E9	2.17 x10 ⁻⁴	2.17 x10 ⁻¹	2.40 x10 ⁻³	2.90 x10 ⁻²	3.11 x10 ³	1000	14.4