

Probing into RNA structures

20180303 Literature Seminar Yun-wei Xue

1

Contents

- 1. Introduction
- 2. Hydroxyl radical footprinting
- 3. LASER (main paper)
- (Light Activated Structural Examination of RNA)

1.1 Roles of RNA in life

mDNA.

uDNA

rDNA

tDNA-

snoRNP

transcription

RNase MRP+snoRN

RNase P

pre-mRNA

pliceosome

localised

nascent

protein

protein

tmRI

translation

RISC (miRNA)

mRNA

ribosom

tRNA

splicing

- 1. Translation from DNA to protein
 - (mRNA, tRNA, rRNA)
- 2.RNA interference
 - (miRNA, siRNA, shRNA)
- 3. Other ncRNAs acting in regulation,
 - RNA processing, reverse
 - transcription, ...

```
(snoRNA, piRNA, dsRNA, ...)
```

¹⁾ Non-coding RNA https://en.wikipedia.org/wiki/Non-coding_RNA#cite_note-MorrisKV-4 (accessed Feb 28, 2018).

1.2 Overview of RNA structures

- 1. Single-strand (in most cases, different from DNA)
- 2. Complicated secondary and tertiary structure
- 3. Variable (not static)due to different surroundings

(in vitro / in vivo)

1.3 Examples of complicated RNAs —GTPase center RNA (PDB ID: IQA6)

1) Bevilacqua, P. C. Annual Review of Genetics 2016, 50 (1), 235–266.

a.

1.3 Examples of complicated RNAs —mRNA RCI2A

1.4 Parameters that affect RNA structure

1. Cations conc.

(Mg²⁺/Na⁺,tend to promote folding of RNA)

- 2. pH
- 3. Compatible solute
- 4. Crowding
- 5. Environment in living cells

(Interaction with proteins or small molecules)

1.5 Methods used for probe RNA

Table 1 Properties of some useful ribo-endonucleases

Table 2	Chemical	probes	used	for	nucleic	acid	structure	determination
---------	----------	--------	------	-----	---------	------	-----------	---------------

*1-Cyclohexyl-3-(2-morpholinoethyl) carbodiimide methane-p-toluene sulfonate

^c Bis(phenanthroline)(phenanthrenequinonediimine)-rhodium(III)

^b β -Ethoxy- α -ketobutyraldehyde

Enzyme	Specificity	Phosphates	Reference	
RNase T ₁	G	2', 3'	79	
RNase CL 3	С	2', 3'	79	
RNase U ₂	A>G	2', 3'	79	
RNase A	C , U	2', 3'	80	
RNase Phy M	A, U	2', 3'	81	
RNase T ₂	Single strand	2', 3'	79	
E. coli RNase I	Single strand	2', 3'	82	
Nuclease S ₁	Single strand	5'	83	
Mung bean nuclease	Single strand	5'	84	
Micrococcal nucleas	e Single strand	3'	85	
RNase V ₁	Double strand	5'	86	

Probe	Specifity	Cleavage	Reference	
Dimethylsulfate (DMS)	Adenine N1	No		
Dimethylsulfate (DMS)	Cytosine N3	Yes	90	
Dimethylsulfate (DMS)	Guanine N7	Yes	90	
Ethylnitrosourea (ENU)	Phosphates	Yes	91	
Diethylpyrocarbonate (DEP)	Adenine N7	Yes	92	
CMCT ^a	Guanine N1	No	93	
CMCT ^a	Uracil or thymine N3	No	93	
Kethoxal ^b	Guanine N1-N2	No	93	
Bromoacetaldehyde	Adenine N1-N6	No	94	
Osmium tetroxide	Pyrimidine C5-C6	Yes	95	
Potassium permanganate	Pyrimidine C5–C6	Yes	96	
2:1.1. 10-Phenanthroline-Cu ²⁺	Single strand	Yes	97	
EDTA-Fe ²⁺	Solvent accessible regions	Yes	98, 99	
Methidiumpropyl-EL TA-Fe ²⁺	Double strand	Yes	100	
Uranyl acetate	Nonselective (light-activated)	Yes	101	
Rh(phen) ₂ phi ^{3+^c}	Tertiary interaction sites (light-activated)	Yes	102, 103	

control in 2.3 Example 1 (*in vitro*)

Methods still in frequent use:

- 1. Dimethylsulfate (DMS) alkylation
- 2. Selective hydroxyl acylation (SHAPE)
- 3. Hydroxyl radical footprinting*
- 4. Ribo-endonucleases (e.g. RNase T)

1) Jaeger, J. Annual Review of Biochemistry 1993, 62(1), 255–287.

2.2-1 Fenton reaction of iron(II)

EDTA with hydrogen peroxide

Contents

- 1. Introduction
- 2. Hydroxyl radical footprinting
- 3. LASER (main paper)
- (Light Activated Structural Examination of RNA)

2.1 Overview of Hydroxyl radical footprinting of RNA

1) Tullius, T. D. Current Opinion in Chemical Biology 2005, 9 (2), 127–134.

2.2 Method for generating • OH

*1. Fenton reaction of iron(II) EDTA with hydrogen peroxide (common) $[Fe(II)(EDTA)]^{2-} + H_2O_2 \longrightarrow [Fe(III)(EDTA)]^{-} + \cdot OH + OH^{-}$ 2. Homolytic dissociation of peroxynitrous acid $ONOO^{-} + H^{+} \longrightarrow ONOOH$ $ONOOH \longrightarrow NO_2 \cdot + \cdot OH$

3. Synchrotron radiolysis of water (applied to *in vivo* use)

2.3 Example 1. (in vitro)

Target: Azoarcus group I ribozyme (195 nt)

2.4 Example 2. (in vivo)

Target: 16S rRNA(1,542 nt) in E. coli

1) Adilakshmi, T. Nucleic Acids Research 2006, 34(8).

2.4 Example 2. (in vivo)

Target: 16S rRNA(1,542 nt) in E. coli

Determination of the optimal X-ray dose: **A**) Agarose gel electrophoresis of total cellular RNA **B**) Full-length cDNA of 16S rRNA from irradiated cells **C**) X-ray dose response curves for hydroxyl radical footprinting

¹⁾ Adilakshmi, T. Nucleic Acids Research 2006, 34(8).

2.4 Example 2. (in vivo)

Target: 16S rRNA(1,542 nt) in *E. coli*

1) Adilakshmi, T. Nucleic Acids Research 2006, 34(8).

2.5 Problems remain to be solved

- *1. Limited use in cells due to experimental challenges
- 2. Lack in fundamental physical or quantum mechanical theory (hard to be rigorously calculated)
- Unable to be applied in supercoiled structure (supercoiled DNA)

Contents

- 1. Introduction
- 2. Hydroxyl radical footprinting
- 3. LASER (main paper)(Light Activated Structural Examination of RNA)

Robert Spitale

2000-2004, B.S. in Biology, B.S. in Chemistry

(S.U.N.Y. College at Fredonia, Prof. Mark E. Janik, synthetic organic/medicinal chemistry)

2004-2009, Ph.D. in Chemistry

(University of Rochester, Joseph E. Wedekind, ncRNAs)

2010-2014, Postdoctoral Fellow

(Stanford University, Howard Y. Chang, Cancer and ncRNAs)

7/1/2014-Present, Assistant Professor

(University of California, Irvine)

3.1 Design of chemical probe

Former results:

a) Aryl nitrenium ions: react with solvent-accessible regions of adenosine (A) and guanosine (G) in DNA to form C8 adducts on picosecond time scales.

b) Aroyl nitrenium ions: *form single-site amidation products with electron-rich heteroarenes*

1) Phillips, D. L. J. Org. Chem. 2014, 79 (8), 3610-3614.

2) Hadad, C. M. J. Am. Chem. Soc. 2009, 131 (32), 11535-11547.

3) König, B. Chemical Science 2015, 6 (2), 987–992.

3.1 Design of chemical probe

Designed probe with its synthetic route:

3.2 Excitation pathway of NAz

3.4 NAz probes purine in folded RNA (*in vitro*)

Target: SAM- I riboswitch (PDB ID: 2GIS) an RNA that binds S-adenosyl methionine (SAM)

3.4 NAz probes purine in folded RNA (*in vitro*)

3.4 NAz probes purine in folded RNA (*in vitro*)

Target: SAM- I riboswitch (PDB ID: 2GIS)

3.5 Comparison with other chemical probes (*in vitro*)

The SAM-I crystal structure mapped with

a) LASER

b) DMS (dimethylsulfate)

- c) SHAPE (selective hydroxyl acylation)
- **d**) Hydroxyl radical probing (discussed in section 2)

purple means less reactive orange means more reactive grey means no apparent difference

3.6 NAz probes purine in living cells (*in vivo*)

1) Spitale, R. C. Nature Chemical Biology 2018, 14 (3), 325–325.

3.7 LASER probing of the U1 snRNP inside living cells (*in vivo*)

Target: U1 snRNP in HeLa cells (PDB ID: 4PKD)

Secondary structure of the U1 snRNP

(Utilize lower expressed RNAs inside living system in order to test the limit of this new method LASER)

3.7 LASER probing of the U1 snRNP inside living cells (in vivo)

Target: U1 snRNP in HeLa cells (PDB ID: 4PKD)

Denaturing gel electrophoresis of LASER on U1 snRNP & close up of residues that have differential NAz probing and their relationship to the U1 and 70K proteins.

purple means more reactive *in vitro* blue means similar reactivity orange means more reactive *in vivo*

Summary

A. Overall working proposal of LASER

1) Spitale, R. C. Nature Chemical Biology 2018, 14 (3), 325-325.

when treating RNAs of lower expression)

Appendix

1) Pogozelski, W. K. J. Am. Chem. SOC. 1995,117, 6428-6433

1) Adilakshmi, T. *Nucleic Acids Research* 2006, 34(8).

1) Carl, R. Woese. *Microbiol Rev.* **1987** *51*(2) 221–271.

1) Hadad, C. M. J. Am. Chem. Soc. 2009, 131 (32), 11535–11547.

Synthesis of NAz and the positive control 8AG

What does the 'S' mean in like 16S or 18S rRNA?

S -> Svedberg unit : Offer a measure of particle size based on the sedimentation rate.

Generally speaking, the bigger the number, the larger the size would be.