New Madelalides Expand a Macrolide Series of Mitochondrial Inhibitors

LS 2018/01/06 Koichi Kamiya

Contents

1. Introduction

Mandelalide A and its Total synthesis by Smith, A. B.

2. Main paper

McPhail, K. L.; Ishmael, J. E.; Smith, A. B.; Gallegos, D. A.; Anklin, C.; Nguyen, M. H.; Wan, X.; Serrill, J. D.; Nazari, M. *J. Med. Chem.* 2017, *60*, 7850–7862.

Isolation¹⁾ a new species of *Lissoclinum* ascidian (2012)

Biological Activity¹⁾ potent cytotoxity to human NCI-H460 lung cancer cells (IC₅₀ = 12 nM) and mouse Neuro-2A neuroblastoma cells (IC₅₀ = 29 nM)

Total Synthesis Ye, T. et al. (2014)²⁾ Fürstner, A. et al. (2015)³⁾ Altmann, K.-H. et al. (2016)⁴⁾ Carter, R. G. et al. (2016)⁵⁾ Smith, A. B. et al. (2016)⁶⁾

1) McPhail, K. L.; Ishmael, J. E. *et. al. J. Org. Chem.* **2012**, 77, 6066. 2) Ye, T.; Xu, Z. *et. al. Angew. Chem. Int. Ed.*, **2014**, *53*, 6533. 3) Fürstner, A.; Thiel, W. *et. al. Chem. Eur. J.*, **2015**, *21*, 10416. 4) Altmann, K.-H.; Bucher, P. *et. al. Chem. Eur. J.*, **2016**, *22*, 1292. 5) Carter, R. G.; McPhail, K. L.; Ishmael, J. E. *et. al. J. Am. Chem. Soc.* **2016**, *138*, 770. 6) Smith, A. B.; Kurogi, T. *et al. J. Am. Chem. Soc.* **2016**, *138*, 3675.

Retro Synthesis of mandelalide A by Smith, A. B.¹⁾

Retro Synthesis of mandelalide A by Smith, A. B.¹⁾

Synthesis of northern hemisphere

Synthesis of southern hemisphere

7

Total Synthesis of mandelalide A

Total Synthesis of mandelalide A

Contents

1. Introduction

Mandelalide A and its Total synthesis by Smith, A. B.

2. Main paper

McPhail, K. L.; Ishmael, J. E.; Smith, A. B.; Gallegos, D. A.; Anklin, C.; Nguyen, M. H.; Wan, X.; Serrill, J. D.; Nazari, M. *J. Med. Chem.* 2017, *60*, 7850–7862.

Isolation of mandelalide analogues

Isolation of mandelalide analogues

Total Synthesis of mandelalide L

Total Synthesis of mandelalide L

Sideproduct of mandelalide

seco mandelalide A methyl ester

Metabolic Pathway in Cancer Cells

Density-Dependent Changes in Sensitivity

¹⁸

Oxidative Phosphorylation

OCR analysis of mandelalide **B**

OCR analysis of mandelalide A-C

Mandelalide A and B have the same function as oligomycin A. However, mandelalide C don't.

Cytotoxicity of A-type mandelalides

Cytotoxicity of C-type mandelalide monosaccharide

Cytotoxicity of C-type mandelalide aglycons

Cytotoxicity of B-type mandelalides

Cytotoxicity of seco Mandelalide A methyl ester

Macrolactone is needed for the cytotoxicity.

Summary

It was revealed that mandelalides affect F1Fo-ATP Synthase.

SAR study revealed that monosaccharide is important for cytotoxicity, especially H-bond doner highlighted in purpole.

Generation of chemical probes for further analysis of the mandelalide binding target may be achievable by additional functionalization of the 24-OH (highlighted in yellow).