Synthetic methodology for Tetrodotoxin

Literature Seminar 2017/9/30 Takahiro Watanabe

Contents

- 1. Introduction
- 2. Introduction of stereocenters of Tetrodotoxin (TTX)
 - 2-1. Kishi's total synthesis of (±)-TTX (first, 1972)
 - 2-2. Fukuyama's total synthesis of (–)-TTX (the latest, 2017)
- 3. Johnson's study (2017, main paper)

Contents

1. Introduction

- 2. Introduction of stereocenters of Tetrodotoxin (TTX)
 - 2-1. Kishi's total synthesis of (\pm) -TTX (first, 1972)
 - 2-2. Fukuyama's total synthesis of (–)-TTX (the latest, 2017)
- 3. Johnson's study (2017, main paper)

Introduction: Tetrodotoxin

HO

tetrodotoxin

Isolation

from pufferfish (Spheroides rubripes)

Biological activity

potent inhibitor of voltage-gated sodium channels (Na_vs)

Structure

polyfunctionalized dioxaadamantane skeleton with nine contiguous stereogenic centers cyclic guanidine containing a hemiaminal moiety

Total synthesis (five group)

racemic: Kishi (1972), Sato (2005)

enantioselective: Isobe (2003, 2004), Du Bois (2003), Sato (2008, 2010), Fukuyama (2017)

```
Kishi, Y.; Nakatsubo, F.; Aratani, M.; Goto, T.; Inoue, S.; Kakoi, H.; Sugiura, S. Tetrahedron Lett. 1970, 11, 5127.
```

Kishi, Y.; Nakatsubo, F.; Aratani, M.; Goto, T.; Inoue, S.; Kakoi, H. Tetrahedron Lett. 1970, 11, 5129.

Kishi, Y.; Aratani, M.; Fukuyama, T.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. J. Am. Chem. Soc. 1972, 94, 9217.

Kishi, Y.; Fukuyama, T.; Aratani, M.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. J. Am. Chem. Soc. 1972, 94, 9219.

Ohyabu, N.; Nishikawa, T.; Isobe, M. J. Am. Chem. Soc. 2003, 125, 8798.

Nishikawa, T.; Urabe, D.; Isobe, M. Angew. Chem., Int. Ed. 2004, 43, 4782.

Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510.

Sato, K.; Akai, S.; Sugita, N.; Ohsawa, T.; Kogure, T.; Shoji, H.; Yoshimura, J. J. Org. Chem. 2005, 70, 7496.

Sato, K.; Akai, S.; Shoji, H.; Sugita, N.; Yoshida, S.; Nagai, Y.; Suzuki, K.; Nakamura, Y.; Kajihara, Y.; Funabashi, M.; Yoshimura, J. *J. Org. Chem.* **2008**, 73, 1234. Akai, S.; Seki, H.; Sugita, N.; Kogure, T.; Nishizawa, N.; Suzuki, K.; Nakamura, Y.; Kajihara, Y.; Yoshimura, J.; Sato, K. *Bull. Chem. Soc. Jpn.* **2010**, 83, 279.

Maehara, T.; Motoyama, K.; Toma, T.; Yokoshima, S.; Fukuyama, T. *Angew. Chem., Int. Ed.* **2017**, *56*, 1549.

Common conceptual target

Contents

- 1. Introduction
- 2. Introduction of stereocenters of Tetrodotoxin (TTX)
 - 2-1. Kishi's total synthesis of (\pm) -TTX (first, 1972)
 - 2-2. Fukuyama's total synthesis of (–)-TTX (the latest, 2017)
- 3. Johnson's study (2017, main paper)

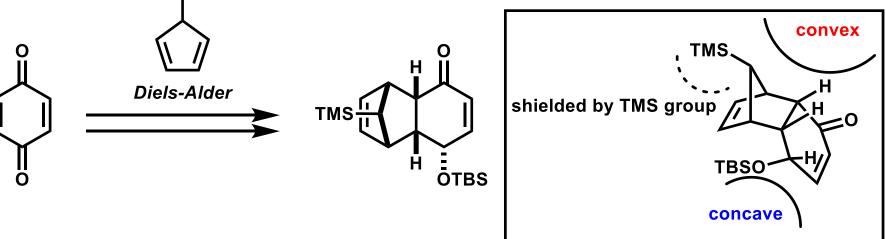
Kishi, Y.; Nakatsubo, F.; Aratani, M.; Goto, T.; Inoue, S.; Kakoi, H.; Sugiura, S. Tetrahedron Lett. 1970, 11, 5127.

Kishi, Y.; Nakatsubo, F.; Aratani, M.; Goto, T.; Inoue, S.; Kakoi, H. Tetrahedron Lett. 1970, 11, 5129.

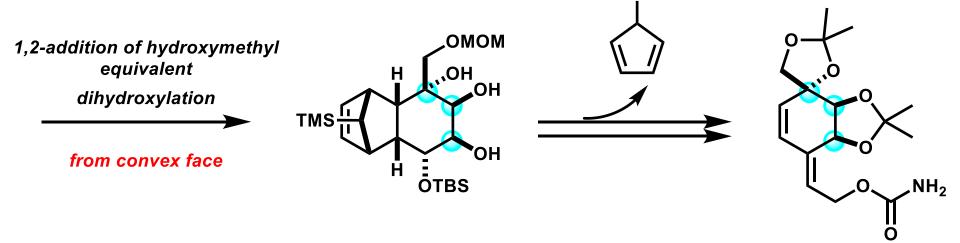
Kishi, Y.; Aratani, M.; Fukuyama, T.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. J. Am. Chem. Soc. 1972, 94, 9217.

Kishi, Y.; Aratani, M.; Fukuyama, T.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. J. Am. Chem. Soc. 1972, 94, 9217.

Kishi, Y.; Aratani, M.; Fukuyama, T.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. J. Am. Chem. Soc. 1972, 94, 9217.


Kishi, Y.; Aratani, M.; Fukuyama, T.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. *J. Am. Chem. Soc.* **1972**, *94*, 9217. Kishi, Y.; Fukuyama, T.; Aratani, M.; Nakatubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. *J. Am. Chem. Soc.* **1972**, *94*, 9219.

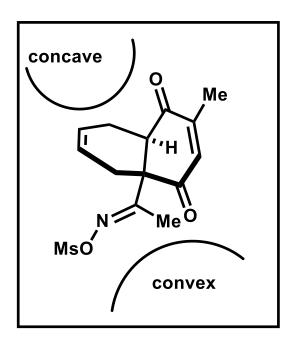
Contents


- 1. Introduction
- 2. Introduction of stereocenters of Tetrodotoxin (TTX)
 - 2-1. Kishi's total synthesis of (\pm) -TTX (first, 1972)
 - 2-2. Fukuyama's total synthesis of (–)-TTX (the latest, 2017)
- 3. Johnson's study (2017, main paper)

TMS

TMS

Fukuyama's approach


Fukuyama's approach

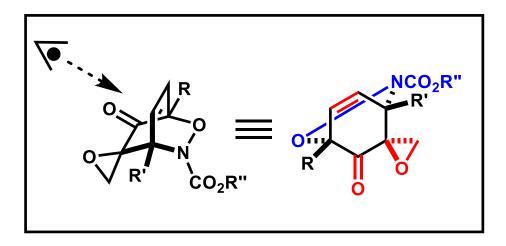
14

Short summary

Kishi

- Use of Diels-Alder reaction in the early stage
- -> determine convex/concave face
- introduction of stereocenters one by one

Fukuyama


- Diels-Alder -> [3,3]-sigmatropic rearrangement (rearrangement occurs from convex face.)
 - -> 1,3-dipolar cycloaddition
- Introduction of two stereocenters at once by <u>dihydroxylation</u> and <u>1,3-dipolar</u> <u>cycloaddition</u> (total four stereocenters)

Contents

- 1. Introduction
- 2. Introduction of stereocenters of Tetrodotoxin (TTX)
 - 2-1. Kishi's total synthesis of (\pm) -TTX (first, 1972)
 - 2-2. Fukuyama's total synthesis of (–)-TTX (the latest, 2017)
- 3. Johnson's study (2017, main paper)

Johnson's strategy

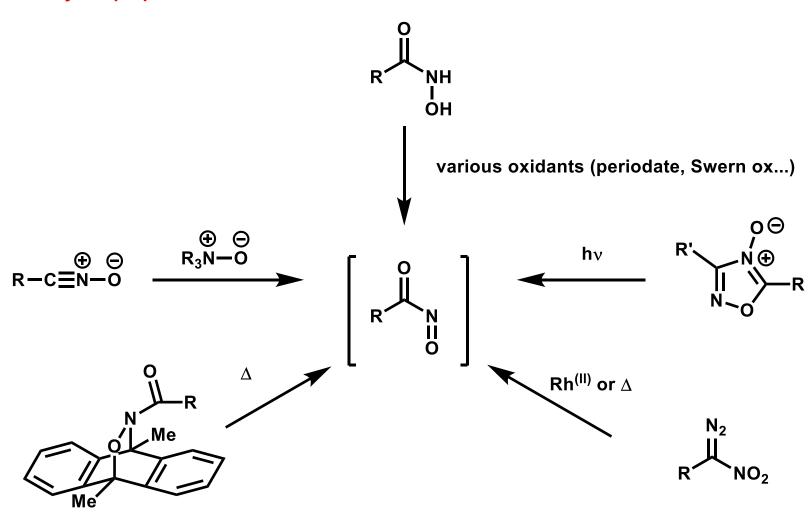
Johnson's strategy

four addressable functional groups

alkene, oxadinane (latent amino alcohol), epoxide, ketone

Adler oxidation

Adler, E.; Brasen, S.; Miyake, H. Acta Chem. Scand. 1971, 25, 2055.


Application of Adler oxidation

Formal total synthesis of (±)-Coriorin by Singh

Preparation of acylnitroso compounds

Acilnitroso compounds are very reactive. (lifetime: 1 ms order)

-> They are prepared and used in situ in chemical reactions.

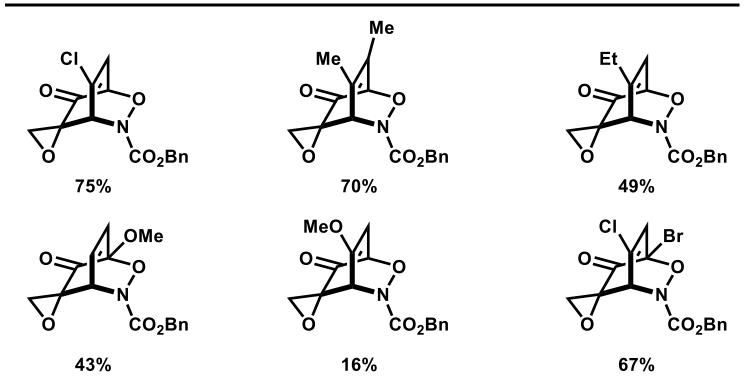
Optimization of conditions (sequential)

entry	R	oxidant	equiv. of 2 and oxidant (ox.)	solvent	temp.(°C)	conv. of 1 (ratio of 2/3)	dr
1	^t Bu	CuCl ₂ (10 mol %) L*, O ₂	' 2: 1.5 eq.	MeOH	rt	85% (1.5:1)	5.3:1
2	^t Bu	ⁿ Bu₄NIO₄	2: 2.0 eq. ox.: 2.0 eq.	CH ₂ Cl ₂	rt-35	30%	2.2:1
3	^t Bu	ⁿ Bu₄NIO₄	2: 2.0+2.0**eq. ox: 2.0+2.0**eq.	CDCI ₃	45	57%	3.2:1
4	^t Bu	ⁿ Bu₄NIO₄	2: 2.0 eq. ox.:2.0 eq.	CDCI ₃	45	58%	2.1:1
5	^t Bu	ⁿ Bu₄NIO₄	2: 2.0 eq. ox.:2.0 eq.	CHCI ₃ (with EtOH as stabilizer	45	100% (4:1)	2.1:1

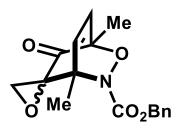
^{*} L = 2-ethyloxazoline (20 mol %)

^{**} Additional 2.0 eq. of 2 was added for 2 hours.

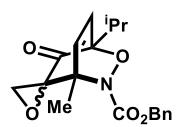
Optimization of conditions (sequential)


entry	R	oxidant	equiv. of 2 and oxidant (ox.)	solvent	temp.(°C)	conv. of 1 (ratio of 3/4)	dr (yield)
6	Bn	ⁿ Bu₄NIO₄	2: 2.0 eq. ox.: 2.0 eq.	CDCI ₃	45	68%	2.7:1 (12%)
7	Bn	ⁿ Bu ₄ NIO ₄	2: 2.0 eq. ox.: 2.0 eq.	CDCI ₃	30	87%	4.0:1 (51%)
8	Bn	ⁿ Bu₄NIO₄	2: 2.0 eq. ox.: 2.0 eq.	CDCI ₃	rt	91%	4.3:1 (74%)

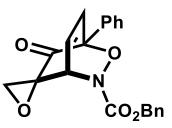
Optimization of conditions (one-pot)


entry	oxidant	solvent	catalyst	conv. of 5	product
1	NaIO ₄	MeOH/water	-	100%	5
2	NaIO ₄	THF/water	-	100%	5
3	ⁿ Bu ₄ NIO ₄	MeOH/water	-	100%	5
4	ⁿ Bu ₄ NIO ₄	THF/water	_	100%	5
5	ⁿ Bu ₄ NIO ₄	THF	-	20%	6/7 (10:1)
6	NaIO ₄	CDCI ₃ /water	BnEt ₃ NCI (10 mol %)	100% (*60%)	6/7 (10:1)
7	NaIO ₄	CH ₂ Cl ₂ /water	BnEt ₃ NCI (10 mol %)	100% (*76%)	6/7 (20:1)

Good, N, S.; Sharpe, J, R.; Johnson, S, J. *J. Am. Chem. Soc.* **2017**, *139*, 12422. * isolated yields

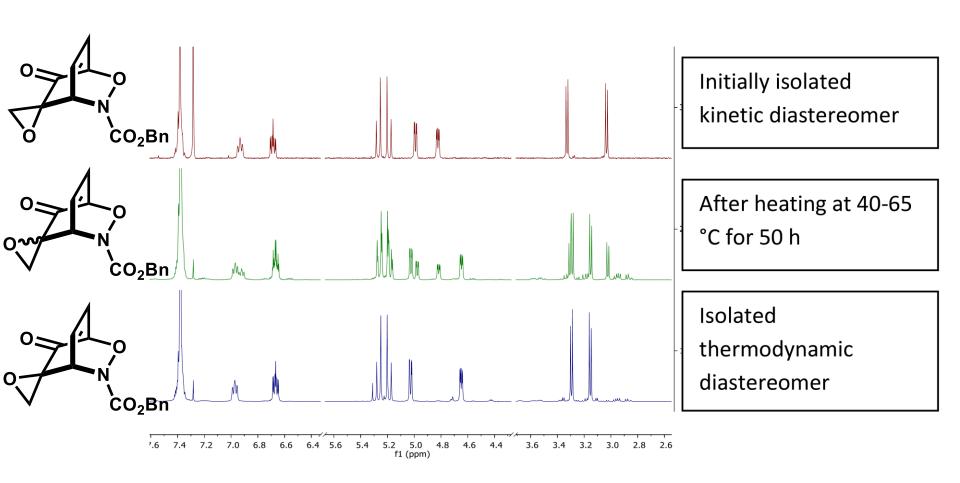

Scope of the One-pot procedure

Scope of the One-pot procedure


44% (<u>4.0</u>:<u>1</u> dr)

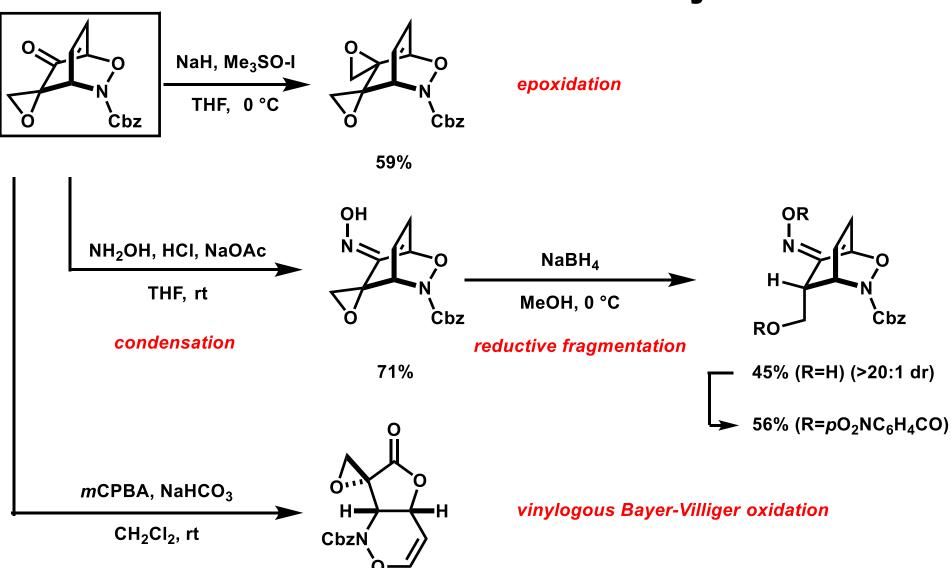
50% (<u>3.2</u>:<u>1</u> dr)

76 % (>20:1 dr)


(Thermal <u>isomerization</u> occurs <u>40 °C</u> and over.)

52 % (>20:1 dr)

(<u>Isomerization</u> is observed after standing at <u>rt</u>.)


Kinetically or thermodynamically products

Chemoselective reactions of heterocycloadducts

Good, N, S.; Sharpe, J, R.; Johnson, S, J. J. Am. Chem. Soc. 2017, 139, 12422.

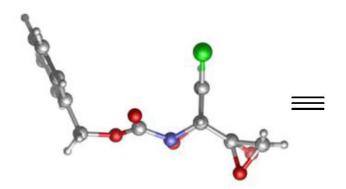
Chemoselective reactions of heterocycloadducts

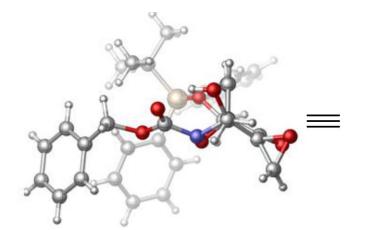
50%

Application of the Oxidation/Cycloaddition cascade procedure towards the TTX core structure

Summary

[2,2,2]-bicyclic products bearing four orthogonal functional groups from simple, aromatic feedstocks

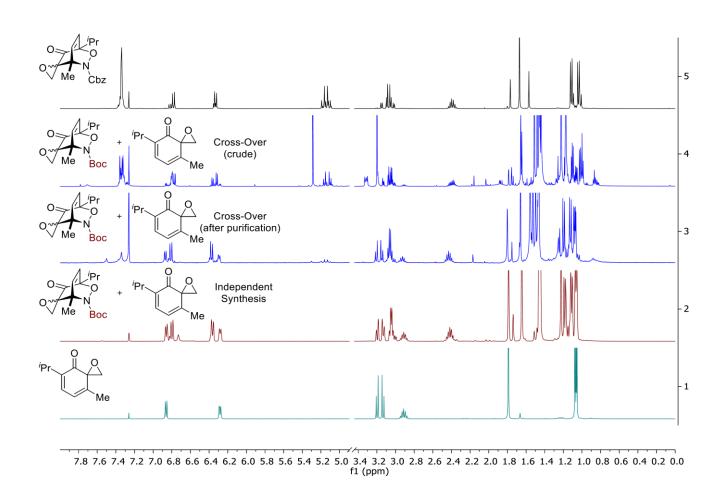

-> Enable to introduce highly substituted stereocenters to cyclohexane ring


Appendix

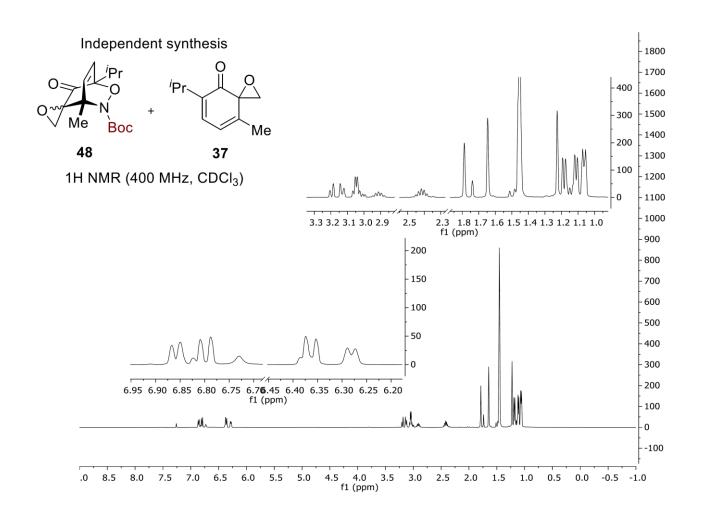
The lifetime of acylnitroso compounds

the lifetime of acylnitroso compounds is on the order of 1 ms. (observeded by time-resolved IR spectroscopy)

Crystal Structures



Cross-over experiment


Cross-over experiment:

A solution of $tBuO_2CNHOH$ (77 mg, 0.58 mmol) in CH_2Cl_2 (1 mL) was added via syringe pump over 2 h to a mixture of **19** (3.4:1 dr, 20 mg, 0.06 mmol) and nBu_4NIO_4 (252 mg, 0.58 mmol) in CH_2Cl_2 (1 mL) at rt. After complete addition, the reaction was diluted with MTBE (4 mL) and the mixture was filtered through a plug of Celite®. The filtrate was concentrated by rotary evaporation and the crude residue was purified by flash chromatography on silica gel (EtOAc:hexanes 10:90 to 20:80) to afford an inseparable mixture of **37** and **48** (mixture of diastereomers, no yield recorded). The 1 H NMR spectrum of the mixture of products matched an independently synthesized mixture of **37** and **48** (prepared using a modified General Procedure A in which BnO₂CNHOH is exchanged for $tBuO_2CNHOH$). The 1 H spectrum of the independently prepared mixture of **37** and **48** is included below the stacked spectra.

Cross-over experiment

Cross-over experiment

