Please provide the reasonable reaction mechanisms and explain the stereoselectivities.

CO₂Me

Lundurine C (0-3)

MeO

Topic: total syntheses of Lundurines

0. Introduction

Lundurine D (0-4)

Isolation: from Kospia tenius

(Kam, T. S.; Yoganathan, K.; Chuah, C. H. Tetrahedron Lett. 1995, 36, 759.)

(Kam, T. S.; Lim, K. H.; Yoganathan, K.; Hayashi, M.; Komiyama, K. Tetrahedron 2004, 60, 10739.)

Pharmacological activity

Lundurine B and D: cytotoxicity against B16 melanoma cells and circumvention of drug-resistance in vincristineresistant KB cells.

CO₂Me

Lundurine B (0-2)

(Kam, T. S.; Lim, K. H.; Yoganathan, K.; Hayashi, M.; Komiyama, K. Tetrahedron 2004, 60, 10739.)

Stractural feature

indoline alkaloid hexacyclic ring system cyclopropane ring

Total synthesis:

(±)-Lundurine B: Hoshi, M.; Kaneko, O.; Nakajima, M.; Arai, S.; Nishida, A. Org. Lett. 2014, 16, 768. (Problem 1) (±)-Lundurine A and B: Arai, S.; Nakajima, M.; Nishida, A. Angew. Chem. Int. Ed. 2014, 53, 5569.

(-)-Lundurine A: Jin, S.; Gong, J.; Qin, Y. Angew. Chem. Int. Ed. 2015, 54, 2228.

(-)-Lundurine B: Nakajima, M.; Arai, S.; Nishida, A. Chem. Asian J. 2015, 10, 1065.

(-)-Lundurine A: Huang, H.X.; Jin, S.J.; Gong, J.; Zhang, D.; Song, H.; Qin, Y. Chem. Eur. J. 2015, 21, 13284.

(-)-Lundurine A-C: Kirillova, M. S.; Muratore, M. E.; Dorel, R.; Echavarren, A. M. J. Am. Chem. Soc. 2016, 138. 3671. (Problem 2 and 3)

1. Discussion

1-1. Suzuki-Miyaura type cross-coupling

1-1-1.Oxidative addition of AcOH to Pd⁰

Amatore, C.; Jutand, A.; Duc, G. L. *Chem. Eur. J.* **2011**, *17*, 2492. Study of the mechanism of the Suzuki-Miyaura reaction by DFT calculation, NMR experiment and cyclic voltammetry. k_{obs}

1-2. lactonization and cyclopropanation

1-2-1. olefin iodination path

1-2-3. SET path

- 2. Experimental data
- 2-1. Intermediate (Toke, L. et al. Tetrahedron Lett. 1990, 31, 7501.)

1-49 could be isolated if K_2CO_3 and $KHCO_3$ mixture were removed by filteration. In the absence of K_2CO_3 reaction stoped and restarted again if K_2CO_3 was added and heating continued. \rightarrow Olefin iodonation path was rejected.

2-2. Experiment with other bases (Toke, L. et al. Tetrahedron 1993, 49, 5133.)

base: t-BuOK, MeONa, DBU, pyridine, KH **solvent**: MeOH, toluene, DMSO

These bases were able to remove the proton from iodomalonic ester moiety. \rightarrow Carbene path was rejected.

2-3. ESR experimant (Toke, L. et al. Tetrahedron 1993, 49, 5133.)

One or two different radicals were generated in this type of reaction.

 \rightarrow Olefin iodonation path and singlet carbene path were rejected.

9

2-13

7-endo-dig **Discussion 2**

2-14

 \cap

- 2. Discussion
- 2-1. Enantioselective Claisen rearrangement
- 2-1-1. Lactamization

There was probably no equilibrium between 2-17-Z and 2-17-E.

11

2-2.gold(I)-catalyzed cyclization

Wu, J.; Kroll, P.; Dias, H. V. R. Inorganic Chemistry, 2009, 48, 423.

Alkyne-Au^I complex was isolated and X-ray analysis was conducted.

X-ray structure of 2-21

Table 1. Selected Bond Lengths (Å) and Angles (deg) of $Au(EtC \equiv CEt)Cl^a$

Parameter	experimental	computed
C3=C4	1.224(6)	1.247
Au-C4	2.152(4)	2.206
Au-C3	2.172(5)	2.231
Au-Cl	2.2703(11)	2.304
C4-C3-C2	166.9(5)	165.7
C3-C4-C5	163.0(5)	163.0

^{*a*} See Figure 2 for the atom numbering scheme. The calculated C=C distance of free 3-hexyne is 1.215 Å.

The average C \equiv C-C angle was 165.0 °, which indicates a significant deviation from linearity.

7-endo-dig cyclization was more favored.

3. Reaction mechanism

3-1

3-3

3-4

ene reaction

3-5

3-3

