Prof. Daniel J. Weix

Cross-Electrophile Coupling

Education and professional experience:

2000 B.S., Columbia University, New York (Prof. Thomas Katz) 2005 Ph. D. University of California, Berkeley, California (Prof. Jonathan Ellman) 2005-2008 Postdoctoral fellow, University of California, Berkeley, California (Prof. John Hartwig) 2008-present Associate professor of chemistry, University of Rochester, New York

Honors and awards:

2000-2003 UC-Berkeley Outstanding Graduate Student Instructor Award 2005-2008 NIH Ruth L. Kirschstein National Research Service Award 2012 Sigma-Aldrich Distinguished Lecturer, University of Colorado 2013 Thieme Chemistry Journal Award 2013 Alfred P. Sloan Research Fellow 2013 Kavli Fellow 2014 Novartis Early Career Award

Research interest:

Development of conceptually new catalytic methods for organic synthesis using first-row transitionmetals (Mn, Fe, Co, Ni, Cu)

Difficulty of Cross Coupling

Recent development:

Nickel catalysed cross-electrophile coupling

http://www2.chem.rochester.edu/~djwgrp/index.php

Introduction for Cross-Electrophile Coupling

170203 LS Daiki Kamakura

Conventional cross coupling

R-X + R'-M <u>cat.</u> R=R "Cô+" "Cô-"

X = halogen or pseudohalogen M = MgX, ZnX, B(OR"), SnR"₃, SiR"₃ cat. = Pd, Ni,...

Preparation of organometallic reagents

2

More straightforward method: Direct cross coupling of two electrophiles

$$R-X$$
 + $R'-X$ $\xrightarrow{cat.}$ $R=R'$
"Côt" "Côt"

1) Ishiyama, T., Murata, M., Miyaura, N. J. Org. Chem. **1995**, *60*, 7508 2) Shipe, W. D., Sorensen, E. J. Org. Lett. **2002**, *4*, 2063.

1) Amatore, M., Gosmini, G. Angew. Chem. int. Ed. 2008, 47, 2089

Contents

1. Cross-electrophile coupling of C(sp²) halides with C (sp³) halides

 $C(sp^2)-X + C(sp^3)-X \longrightarrow Aryl-Alkyl$

2. Cross-electrophile coupling of C(sp²) halides

1. Cross-electrophile coupling of C(sp²) halides with C (sp³) halides

Contents

C(sp²)-X + C(sp³)-X <u>cat.</u> Aryl=Alkyl

2. Cross-electrophile coupling of C(sp²) halides

Cross Coupling of Aryl Halide with Alkyl Halide

4

Substrate Scope of Aryl Halides

Everson, D. A. Shrestha, R. Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920

Cross Coupling of Aryl Bromide with Alkyl Bromide

Everson, D. A., Jones, B. A., Weix, D. J. J. Am. Chem. Soc. 2012, 134, 6146.

9

Substrate Scope

Everson, D. A. Shrestha, R. Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920

Potential Mechanisms for Cross Coupling

	•		
A. R ¹ -X -	Mn ⁰ R ¹ −Mn ^{II} X ^{Ni⁰,}	, R ² −I → R ¹ −Ni ^{II} −R ² −−−	→ R ¹ -R ²
R-I	Mn ⁰ (2 eq.) DMPU 60 °C or 80 °C, 24 h	R–Mn ⁱⁱ l	
Substra	te Temp (°C)	Consumption of R-I (%) ^a	
Ph-I	60	0	
Ph-I	80	0	
C ₈ H ₁₇ -	i 60	0	
C ₈ H ₁₇ -	4 80	19	
a Deter was u	mined by GC. Based or used as an internal stan	n unreacted iodide (dodecane dard).	-
* Catalyt	ic cross coupling of Ph	-I and C ₈ H ₁₇ -I is complete in 3	hours
In this co	upling reaction, organo	omanganese species (<mark>R–</mark> Mn ^{II} I)	was <u>not</u> formed.
erson, D. A. Shres	tha. R. Weix, D. J. J. Am	Chem Soc 2010 132 920	

Control Experiment: Direct Insertion of Mn⁰

Effects of the amount of Ni catalyst

Reaction of Arylnickel with Alkylnickel

Selectivity in Oxidative Addition

Reaction of Organonickels with Halides

Using Ni^{II} catalyst as a radical initiator

Alkyl halides would be reduced by R²–Ni^{II}X to form alkyl radical.

Presence of the Alkyl Radica Intermediate (1)

Presence of the Alkyl Radica Intermediate (2)

Biswas, S. Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.

Mechanism for Cross-Electrophile Coupling

Biswas, S. Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.

21

Contents

1. Cross-electrophile coupling of C(sp²) halides with C (sp³) halides

C(sp²)−X + C(sp³)−X → Aryl−Alkyl

2. Cross-electrophile coupling of C(sp²) halides

Biswas, S. Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.

Working Hypothesis

relative reactivity of Ni and Pd catalysis

Working Hypothesis

23

Cross-Electrophile Coupling of C(sp²) halides

^a Dtermined by GC. Based on coupling adduct, biaryl, reduced compounds (ArH) and SM.
^b KF (1 equiv. was used as an additive)
^c Isolated yield in parenthesis.

Ackerman, L. K., Lovell, M. M., Weix, D. J. Nature. 2015, 524, 454.

Ackerman, L. K., Lovell, M. M., Weix, D. J. Nature. 2015, 524, 454.

25

Reactivity of Niº and Pdº catalyst

*(bpy)Ni⁰ was reacted with aryl bromide selectively. (bpy)Ni^{II}PhBr was unstable under this condition (biphenyl was gradually formd).

*On the other hand, (dppp)Pd⁰ was reacted with aryltriflate to give relatively stable (dppp)PdArOTf. *(dppp)Pd⁰ was reacted faster than (bpy)Ni⁰.

24

Proposed Catalytic Cycle

Summary

* Selective oxidative addition to aryl halides * Selective formation of alkyl radical

Everson, D. A. Shrestha, R. Weix, D. J. *J. Am. Chem. Soc.* 2010, 132, 920 Biswas, S. Weix, D. J. *J. Am. Chem. Soc.* 2013, 135, 16192.

Ni cat., bpy Pd cat., dppp -Br + TfO-KF, Zn⁰ : 1

28

* Selective oxidative addition to aryl bromide * Faster oxidative addition of palladium to aryl triflate

Ackerman, L. K., Lovell, M. M., Weix, D. J. Nature. 2015, 524, 454.