Antibody-Drug Conjugates

Literature Seminar (2016/11/15) D2 Satoshi Hashimoto

Contents

1. Introduction

Design and Activity of Antimitotic ADCs 2-1. Maytansinoids 2-2. Auristatins

3. Main Paper

"Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates"

Antibody-Drug Conjugates (ADCs)

Anti-Cancer Agents

Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Angew. Chem. Int. Ed. 2014, 53, 3796.

Targeted Therapies

- Inhibitors of receptor tyrosine kinases
- Monoclonal antibodies

Imatinib

- Antibody-drug conjugates
- Small targeting molecule-drug conjugates
- Antisense method

• Drug container (151120_LS_Akinori_YAMAGUCHI)

Key Requirements of ACDs

<u>Antibody</u>

- High binding affinity
- Internizable
- Humanized/Human mAb

<u>Linker</u>

- Stable
- Efficient cleavage in cell

Payload

- High potency [pM]
- Stable
- Soluble
- Chemically modification
- Tumor selectivity

Contents

1. Introduction

Design and Activity of Antimitotic ADCs 2-1. Maytansinoids

2-2. Auristatins

3. Main Paper

"Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates"

Maytansinoids

Maytansine

Isolation: from the bark of *Maytenus ovatys*¹⁾ Biological activity: microtubule inhibition²⁾ Structural features: 19-membered macrolactam Total syntheses of Maytansine:³⁾ Corey (1980), Gao (1988), Total syntheses of Maytansinol:⁴⁾ Meyers (1980), Isobe (1984), Khuong-Huu (1996)

SAR of maytansine

Required:

Carbamate at C9 Double bonds at C11 & C13 Epoxide Ester at C3 but structure could be varied.

- 1) Kupchan, S. M. et al. J. Am. Chem. Soc. 1972, 94, 1354.
- 2) Kupchan, S. M. et al. Science **1975**, 189, 1002.
- 3) (a) Corey, E. J. et al. J. Am. Chem. Soc. 1980, 102, 6613. (b) Gao, Y. Sci. Sin. Ser. B (Engl. Ed.) 1988, 31, 1342.
- 4) (a) Meyers, A. I. *et al. J. Am. Chem. Soc.* **1980**, *102*, 6597. (b) Isobe, M. *et al. J. Am. Chem. Soc.* **1984**, *106*, 3252. (c) Khuong-Huu, F. *et al. J. Org. Chem.* **1996**, *61*, 7133.

Preparation of Antibody-Maytansinoid Conjugates (AMCs)

Chari, R. V. J. *et al. J. Med. Chem.* **2006**, *49*, 4392.

Preparation of Antibody-Maytansinoid Conjugates (AMCs)

Chari, R. V. J. *et al. J. Med. Chem.* **2006**, *49*, 4392.

Disulfide reduction Relative EC₅₀ (pM) Structure stability rate^a (*k* [M⁻¹min⁻¹]) huC242-SPDB-DM1 14 1 15 huC242-SPP-DM1 $\left(\bigcup_{DM} \bigcup_{M} \right)$ 2 7 15 huC242-SPDB-DM3 (DM Ss 1.0 5.0 14 huC242-SMPP-DM4 (DM < 0.00064 5 >22000 DM huC242-SMCC-DM1 n.d. n.d. 3.5 0 non-cleavable \ , thioether linker

Effect of Different Linkers on Stability and Cytotoxicity

^a disulfide reduction by DTT at pH 6.5, 37 °C.

Kellogg, B. A. et al. Bioconhugate Chem. 2011, 22, 717.

Bystander Effect of AMCs

Only AMC with the noncleavable linker had no bystander killing.

Cellular Catabolism of AMCs

Erickson, H. K. et al. Cancer Res. 2006, 66, 4426.

Effect of Linkers on Different Antibodies

Comparison of antitumor activities

Cleavable disulfide linker ADC has a better drug release. Whereas non-cleavable thioether linker ADC has a improved stability.

There may be some target-antigen dependency.

trastuzumab-<mark>SSNPP</mark>-DM3 (R = H) trastuzumab-<u>SSNPP</u>-DM4 (R = Me)

Tmab-SMCC-DM1 was clinically approved by FDA as Kadcyla.

1) Kellogg, B. A. *et al. Bioconjugate Chem.* **2011**, *22*, 717. 2) Phillips, G. D. L. *et al. Cancer Res.* **2008**, *6*, 9280.

Contents

1. Introduction

2. Design and Activity of Antimitotic ADCs 2-1. Maytansinoids

2-2. Auristatins

3. Main Paper

"Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates"

Auristatin Analogues

Monomethyl Auristatin E (MMAE): $IC_{50} = 0.1$ (nM)²⁾

Pettit, G. R. *et al. J. Am. Chem. Soc.* **1987**, *109*, 6883.
Doronina, S. O. *et al. Bioconjugate Chem.* **2006**, *17*, 114.

Linker Design of Auristatin ADCs

Mal-caproyl-val-cit-PAB-MMAE

Doronina, S. O. et al. Nat. Biotechnol. 2013, 21, 778

Cellular Catabolism of Auristatin ADCs

Doronina, S. O. et al. Nat. Biotechnol. 2013, 21, 778

Citotoxicity of Auristatin ACD

Cytotoxic effects on H3396 human breast carcinoma cells (cBR96 Ag+, cAC10 Ag-).

SCID mice with Karpas 299 human ALCL tumors (cAC10 Ag+, cBR96 Ag-) were treated with MMAE or mAb-Val-Cit-MMAE (1/30th of MTD).

cAC10-Val-Cit-MMAE was clinically approved by FDA as Brentuximab vedotin (Adcetris).

Doronina, S. O. et al. Nat. Biotechnol. 2013, 21, 778

Contents

1. Introduction

Design and Activity of Antimitotic ADCs 2-1. Maytansinoids 2-2. Auristatins

3. Main Paper

"Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates"

Potential Aggregation

Thermal Stabilities of isolated mAb-Val-Cit-MMAE

mAb-ADCs were incubated in buffer and HMWS was determined by size-exclusion chromatography. The control was mAb-ADC containing a mixture of 0-8 drug molecules per mAb (average DAR = 3.6). (DAR = drug to antibody ratio, HMWS = high

(DAK – drug to antibody ratio, HWWS – high molecular-weight species)

Mechanism of p-Aminobenzyl Quaternary Ammonium Salt

Characterization of Quaternary-Ammonium-Linked System

Selection and Evaluation of Amines

Synthesis of a Library of PABQ-Linked Amines

In Vivo Stability and Efficacy

In vivo efficacy of mAb-**16**. anti-NaPi (negative control)

mAb-16 showed good stability in blood circulation and complete reguression of tumor (8 mg/kg).

DAR was determined using an affinity-capture LC/MS.

Application to Antibiotic ACDs

Lehar, S. M. *et al. Nature* **2015**, *527*, 323.

Application to Antibiotic ACDs

Lehar, S. M. et al. Nature 2015, 527, 323.

- Modification of tertialy and heteroaryl amines
- Increased water solubility
- Efficient synthesis for assessing new drug classes
- Appication to other therapeutic areas

A1. Preparation of Antibody-Maytansinoid Conjugates (AMCs)

Kellogg, B. A. et al. Bioconjugate Chem. 2011, 22, 717.

A2. Maytansinoid Catabolites Detected Inside and Outside Cells

g(A) and h(B), chromatograms obtained from the acetone extract of the ADC samples before exposure to cells (control). Metabolites were analyzed by HPLC.

A3. Quaternary-Ammonium-Linked Disulfide Conjugates

Total ion chromatograms of **17** (a) before (b) 1 h after glutathione (GSH) reduction.