

Chemistry of Dehydro-Diels-Alder Reaction

LS 2016.10.24 Takahiro Kawamata

Contents

1. Introduction

- 1-1. Concept of dehydro-Diels-Alder (DDA) reactions
- **1-2.** Overview of benzyne chemistry

2. Recent study and application of DDA reactions

2-1. Initial studies by Johnson and Ueda (1997~2008)2-2. Studies by Hoye group (2012~present)

Diels-Alder Reaction

Specific types or variants of Diels-Alder reactions

• intramolecular (IMDA) reaction

• hetero-Diels-Alder (HDA) reaction

• inverse electron demand HDA reaction

• dehydro-Diels-Alder (DDA) reaction

Dehydro-Diels-Alder Reaction

Landmark Events

Benzyne/aryne chemistry

Methods for the Generation of *o-Benzyne*

Conventional method of benzyne generation

o-Benzyne Generation and Trapping

Possible modes of action of benzyne

Contents

1. Introduction

- 1-1. Concept of dehydro-Diels-Alder (DDA) reactions
- **1-2. Overview of benzyne chemistry**

2. Recent study and application of DDA reactions

2-1. Initial studies by Johnson and Ueda (1997~2008)

2-2. Studies by Hoye group (2012~present)

Johnson's Discovery

Deuterium Labeling Study

Studies by Ueda Group

R	time	results	R	time	results
Ме	48	A : 45%, B : 38%	Ph	72	A : 40%, B : 3.3% benzophenone : 6.0%
3/	72	A : 66%, B : 6.3%	~ Ph		
齐 Ph	72	A : 53%, B : 14%	300	48	A : 52%, B : not detected

Proposed Mechanism by Ueda Group

My Proposal of the Mechanism

Evidence of Arylcarbene Formation

Application for DNA Cleavage

Direct Observation of Plasmid DNA by AFM

b

Visualization by atomic force microscopy (AFM)

Contents

1. Introduction

1-1. Concept of dehydro-Diels-Alder (DDA) reactions

1-2. Overview of benzyne chemistry

2. Recent study and application of DDA reactions

2-1. Initial studies by Johnson and Ueda (1997~2008)

2-2. Studies by Hoye group (2012~present)

- 1. Alkane desaturation
- 2. Aromatic ene reaction
- 3. Mechanistic study
- 4. Pentadehydro-Diels-Alder reaction (main paper)

Revelation of HDDA reaction by Hoye Group

Substrate Scope of HDDA Reaction

Application : Alkane Desaturation

Application : Aromatic Ene Reaction (1)

The only reported aromatic ene reaction

Brinkley, Y. J.; Friedman, L. Tetrahedron Lett. 1972, 13, 4141.

Application : Aromatic Ene Reaction (2)

Mechanistic Study of HDDA Reaction

concerted or stepwise ?

Relative Rates of the HDDA Reactions

Ts conditions	R TBSO	condition		R → TBS δ· − R → δ· - - - - - - - - - - - - -	concerted	
	entry	R	k _{rel}	σ _p	RSE (kcal/mol)	
_	1	m Me	320	0.03	-12.1	
	2	СНО	100	0.42	-7.7	
	3	COMe	16	0.34	-6.7	
	4	CO ₂ Me	9.1	0.34	-4.9	
	5	CONEt ₂	1	0.26	-4.9	
	6	н	<<1	0	0	
_	7	CF ₃	<<1	0.54	+1.9	

 σ_p : Hammet constant, RSE : radical-stabilizing energy

Relative Rates of Diels-Alder Cycloadditions

entry	R	k _{rel}	σ _p	RSE (kcal/mol)
1	СНО	47,000	0.42	-7.7
2	CF ₃	16,800	0.54	+1.9
3	COEt	2,100	0.34	-6.7
4	CO ₂ Me	840	0.34	-4.9
5	CONEt ₂	50	0.26	-4.9
6	н	10	0	0
7	Me	1	0.03	-12.1

 σ_{p} : Hammet constant, RSE : radical-stabilizing energy

Conclusion of Mechanistic Study

Pentadehydro-Diels-Alder Reaction

Scope of the PDDA Cascades of Substrates

entry	R'	solvent	Nu	yield
1	Ms	piperidine	<u>م</u> م	81%
2	Ts	piperidine	N ⁻ S	52%
3	Bz	piperidine	\checkmark	25%
4	Ms	<i>n</i> -butylamine	n-BuN Ş	86%
5	Ms	methanol	MeO Ş	80%
6	Ms	MeCN/H ₂ O	но -}-	15%

Aza-PDDA Reactions

Scope of the Aza-PDDA Cascades of Substrates

entry	R	NuH	Nu	yield
1	Ts	piperidine	∕_N ³ 5	71%
2	Ms	piperidine	\smile	69%
3	Ts	<i>n</i> -butylamine	n-BuN Ş	46%
4	Ts	methanol	MeO Ş	72%
5	Ts	MeCN/H ₂ O* (3:1)	но -}	57%

* MeCN was used instead of DMF.

Mechanistic Aspects of the PDDA Reaction

Evidence of Allenyne Intermediate

Summary

Appendix

Stereoselectivity of Aromatic Ene/Alder Ene Cascade

Competition between Aromatic ene and DA reaction

Mechanism of Radical Fragmentation

http://molecules.a.la9.jp/Anticancer.html 37

Geometry of Benzyne and Comparison of Energies

Geomety of benzyne

Comparison of computed free energy changes

Comparison of Energies at B3LYP-D3BJ Level

Marell, D. J.; Furan, L. R.; Woods, B. P.; Lei, X.; Bendelsmith, A. J.; Cramer, C. J.; Hoye, T. R.; Kuwata, K. T. *J. Org. Chem.* **39 2015**, *80*, 11744.

Dimerization of Phenylpropynoic Acid in 1898

Substrate Synthesis by Ueda

<u>Reaction conditions and Reagents:</u> a) NaH or KO⁴Bu, RBr (or RI), Bu₄NI, C₆H₆ or THF, r.t., 0.5-1 h; b) **19**, PdCl₂(PPh₃)₂, Toluene, 80-110 °C; c) K₂CO₃, MeOH, 0 °C, 30 min; d) Bu₃SnCl, [(CH₃)₂CH]₂NH, 0 °C, 30 min, then added **9**, r.t., 24 h; e) 2-Bromobenzaldehyde, PdCl₂(PPh₃)₂, Toluene, 80-110 °C, 2h; f) NaBH₄, MeOH, 0 °C, 10 min, then added K₂CO₃, 0 °C, 30 min; g) DHP, *p*-TosOH, CH₂Cl₂, r.t., 1 h; h) **18**, Ether, r.t. 30 min; i) Cul, Pyrrolidine, -20 °C; j) IBX, DMSO, r.t.